Kuuskeri Jaana, Mäkelä Miia R, Isotalo Jarkko, Oksanen Ilona, Lundell Taina
Department of Food and Environmental Sciences, Division of Microbiology and Biotechnology, University of Helsinki, Viikki Biocenter 1, P.O.B. 56, FIN-00014, Helsinki, Finland.
Department of Forest Sciences, University of Helsinki, Helsinki, Finland.
BMC Microbiol. 2015 Oct 19;15:217. doi: 10.1186/s12866-015-0538-x.
The fungal genus Phlebia consists of a number of species that are significant in wood decay. Biotechnological potential of a few species for enzyme production and degradation of lignin and pollutants has been previously studied, when most of the species of this genus are unknown. Therefore, we carried out a wider study on biochemistry and systematics of Phlebia species.
Isolates belonging to the genus Phlebia were subjected to four-gene sequence analysis in order to clarify their phylogenetic placement at species level and evolutionary relationships of the genus among phlebioid Polyporales. rRNA-encoding (5.8S, partial LSU) and two protein-encoding gene (gapdh, rpb2) sequences were adopted for the evolutionary analysis, and ITS sequences (ITS1+5.8S+ITS2) were aligned for in-depth species-level phylogeny. The 49 fungal isolates were cultivated on semi-solid milled spruce wood medium for 21 days in order to follow their production of extracellular lignocellulose-converting oxidoreductases and carbohydrate active enzymes.
Four-gene phylogenetic analysis confirmed the polyphyletic nature of the genus Phlebia. Ten species-level subgroups were formed, and their lignocellulose-converting enzyme activity profiles coincided with the phylogenetic grouping. The highest enzyme activities for lignin modification (manganese peroxidase activity) were obtained for Phlebia radiata group, which supports our previous studies on the enzymology and gene expression of this species on lignocellulosic substrates.
Our study implies that there is a species-level connection of molecular systematics (genotype) to the efficiency in production of both lignocellulose-converting carbohydrate active enzymes and oxidoreductases (enzyme phenotype) on spruce wood. Thus, we may propose a similar phylogrouping approach for prediction of lignocellulose-converting enzyme phenotypes in new fungal species or genetically and biochemically less-studied isolates of the wood-decay Polyporales.
脉菌属包含许多在木材腐朽过程中起重要作用的物种。此前已对该属少数物种在酶生产以及木质素和污染物降解方面的生物技术潜力进行了研究,但该属的大多数物种仍不为人知。因此,我们对脉菌属物种的生物化学和系统学进行了更广泛的研究。
对脉菌属的分离菌株进行四基因序列分析,以明确它们在物种水平上的系统发育位置以及该属在脉菌状多孔菌目中的进化关系。采用编码核糖体RNA的序列(5.8S,部分大亚基)和两个编码蛋白质的基因序列(甘油醛-3-磷酸脱氢酶基因、RNA聚合酶II第二大亚基基因)进行进化分析,并对ITS序列(ITS1 + 5.8S + ITS2)进行比对以深入研究物种水平的系统发育。将49株真菌分离菌株接种在半固体碾碎云杉木培养基上培养21天,以监测它们胞外木质纤维素转化氧化还原酶和碳水化合物活性酶的产生情况。
四基因系统发育分析证实了脉菌属的多系性质。形成了10个物种水平的亚组,它们的木质纤维素转化酶活性谱与系统发育分组一致。辐射脉菌组的木质素修饰酶活性(锰过氧化物酶活性)最高,这支持了我们之前关于该物种在木质纤维素底物上的酶学和基因表达的研究。
我们的研究表明,在云杉木上,分子系统学(基因型)与木质纤维素转化碳水化合物活性酶和氧化还原酶的生产效率(酶表型)之间存在物种水平的联系。因此,我们可以提出一种类似的系统发育分组方法,用于预测新真菌物种或木材腐朽多孔菌目中遗传和生化研究较少的分离菌株的木质纤维素转化酶表型。