Garbincius Joanne F, Michele Daniel E
Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109;
Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109; Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
Proc Natl Acad Sci U S A. 2015 Nov 3;112(44):13663-8. doi: 10.1073/pnas.1512991112. Epub 2015 Oct 19.
Patients deficient in dystrophin, a protein that links the cytoskeleton to the extracellular matrix via the dystrophin-glycoprotein complex (DGC), exhibit muscular dystrophy, cardiomyopathy, and impaired muscle nitric oxide (NO) production. We used live-cell NO imaging and in vitro cyclic stretch of isolated adult mouse cardiomyocytes as a model system to investigate if and how the DGC directly regulates the mechanical activation of muscle NO signaling. Acute activation of NO synthesis by mechanical stretch was impaired in dystrophin-deficient mdx cardiomyocytes, accompanied by loss of stretch-induced neuronal NO synthase (nNOS) S1412 phosphorylation. Intriguingly, stretch induced the acute activation of AMP-activated protein kinase (AMPK) in normal cardiomyocytes but not in mdx cardiomyocytes, and specific inhibition of AMPK was sufficient to attenuate mechanoactivation of NO production. Therefore, we tested whether direct pharmacologic activation of AMPK could bypass defective mechanical signaling to restore nNOS activity in dystrophin-deficient cardiomyocytes. Indeed, activation of AMPK with 5-aminoimidazole-4-carboxamide riboside or salicylate increased nNOS S1412 phosphorylation and was sufficient to enhance NO production in mdx cardiomyocytes. We conclude that the DGC promotes the mechanical activation of cardiac nNOS by acting as a mechanosensor to regulate AMPK activity, and that pharmacologic AMPK activation may be a suitable therapeutic strategy for restoring nNOS activity in dystrophin-deficient hearts and muscle.
肌营养不良蛋白是一种通过肌营养不良蛋白 - 糖蛋白复合物(DGC)将细胞骨架与细胞外基质连接起来的蛋白质,缺乏该蛋白的患者会出现肌肉萎缩、心肌病以及肌肉一氧化氮(NO)生成受损的症状。我们使用活细胞NO成像技术以及分离的成年小鼠心肌细胞的体外循环拉伸作为模型系统,来研究DGC是否以及如何直接调节肌肉NO信号的机械激活。在缺乏肌营养不良蛋白的mdx心肌细胞中,机械拉伸对NO合成的急性激活作用受损,同时伴随拉伸诱导的神经元型一氧化氮合酶(nNOS)S1412磷酸化的丧失。有趣的是,拉伸在正常心肌细胞中可诱导AMP激活的蛋白激酶(AMPK)急性激活,但在mdx心肌细胞中则不然,并且特异性抑制AMPK足以减弱NO生成的机械激活作用。因此,我们测试了直接药物激活AMPK是否可以绕过有缺陷的机械信号传导,以恢复缺乏肌营养不良蛋白的心肌细胞中的nNOS活性。事实上,用5 - 氨基咪唑 - 4 - 甲酰胺核苷或水杨酸盐激活AMPK可增加nNOS S1412磷酸化,并且足以增强mdx心肌细胞中的NO生成。我们得出结论,DGC作为机械传感器调节AMPK活性,从而促进心脏nNOS的机械激活,并且药物性AMPK激活可能是恢复缺乏肌营养不良蛋白的心脏和肌肉中nNOS活性的合适治疗策略。