Suppr超能文献

木薯中CG基因体DNA甲基化变化与重复基因的进化

CG gene body DNA methylation changes and evolution of duplicated genes in cassava.

作者信息

Wang Haifeng, Beyene Getu, Zhai Jixian, Feng Suhua, Fahlgren Noah, Taylor Nigel J, Bart Rebecca, Carrington James C, Jacobsen Steven E, Ausin Israel

机构信息

Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90095;

Donald Danforth Plant Science Center, St. Louis, MO 63132;

出版信息

Proc Natl Acad Sci U S A. 2015 Nov 3;112(44):13729-34. doi: 10.1073/pnas.1519067112. Epub 2015 Oct 19.

Abstract

DNA methylation is important for the regulation of gene expression and the silencing of transposons in plants. Here we present genome-wide methylation patterns at single-base pair resolution for cassava (Manihot esculenta, cultivar TME 7), a crop with a substantial impact in the agriculture of subtropical and tropical regions. On average, DNA methylation levels were higher in all three DNA sequence contexts (CG, CHG, and CHH, where H equals A, T, or C) than those of the most well-studied model plant Arabidopsis thaliana. As in other plants, DNA methylation was found both on transposons and in the transcribed regions (bodies) of many genes. Consistent with these patterns, at least one cassava gene copy of all of the known components of Arabidopsis DNA methylation pathways was identified. Methylation of LTR transposons (GYPSY and COPIA) was found to be unusually high compared with other types of transposons, suggesting that the control of the activity of these two types of transposons may be especially important. Analysis of duplicated gene pairs resulting from whole-genome duplication showed that gene body DNA methylation and gene expression levels have coevolved over short evolutionary time scales, reinforcing the positive relationship between gene body methylation and high levels of gene expression. Duplicated genes with the most divergent gene body methylation and expression patterns were found to have distinct biological functions and may have been under natural or human selection for cassava traits.

摘要

DNA甲基化对于植物中基因表达的调控以及转座子的沉默非常重要。在此,我们展示了木薯(Manihot esculenta,品种TME 7)全基因组单碱基对分辨率的甲基化模式,木薯是一种对亚热带和热带地区农业有重大影响的作物。平均而言,在所有三种DNA序列背景(CG、CHG和CHH,其中H等于A、T或C)下,DNA甲基化水平均高于研究最为深入的模式植物拟南芥。与其他植物一样,在转座子以及许多基因的转录区域(基因体)均发现了DNA甲基化。与这些模式一致,我们鉴定出了拟南芥DNA甲基化途径所有已知组分在木薯中的至少一个基因拷贝。与其他类型的转座子相比,发现LTR转座子(GYPSY和COPIA)的甲基化异常高,这表明对这两种转座子活性的控制可能尤为重要。对全基因组复制产生的重复基因对的分析表明,在较短的进化时间尺度上,基因体DNA甲基化和基因表达水平共同进化,强化了基因体甲基化与高水平基因表达之间的正相关关系。发现具有最不同基因体甲基化和表达模式的重复基因具有不同的生物学功能,并且可能在木薯性状的自然或人工选择下产生。

相似文献

1
CG gene body DNA methylation changes and evolution of duplicated genes in cassava.
Proc Natl Acad Sci U S A. 2015 Nov 3;112(44):13729-34. doi: 10.1073/pnas.1519067112. Epub 2015 Oct 19.
2
Diversity of LTR-retrotransposons and Enhancer/Suppressor Mutator-like transposons in cassava (Manihot esculenta Crantz).
Mol Genet Genomics. 2008 Oct;280(4):305-17. doi: 10.1007/s00438-008-0366-x. Epub 2008 Jul 18.
3
Divergent DNA methylation contributes to duplicated gene evolution and chilling response in tea plants.
Plant J. 2021 Jun;106(5):1312-1327. doi: 10.1111/tpj.15237. Epub 2021 Apr 16.
4
Genomic distribution of H3K9me2 and DNA methylation in a maize genome.
PLoS One. 2014 Aug 14;9(8):e105267. doi: 10.1371/journal.pone.0105267. eCollection 2014.
6
DNA methylation mutants in elucidate individual roles of CG and non-CG methylation in genome regulation.
Proc Natl Acad Sci U S A. 2020 Dec 29;117(52):33700-33710. doi: 10.1073/pnas.2011361117. Epub 2020 Dec 21.
7
DNA methylation of retrotransposons, DNA transposons and genes in sugar beet (Beta vulgaris L.).
Plant J. 2017 Jun;90(6):1156-1175. doi: 10.1111/tpj.13526. Epub 2017 Apr 9.

引用本文的文献

1
Epigenetic insights into the domestication of tetraploid peanut.
Plant Physiol. 2025 Jul 3;198(3). doi: 10.1093/plphys/kiaf254.
5
The lemon genome and DNA methylome unveil epigenetic regulation of citric acid biosynthesis during fruit development.
Hortic Res. 2024 Jan 5;11(3):uhae005. doi: 10.1093/hr/uhae005. eCollection 2024 Mar.
6
6mA DNA Methylation on Genes in Plants Is Associated with Gene Complexity, Expression and Duplication.
Plants (Basel). 2023 May 10;12(10):1949. doi: 10.3390/plants12101949.
7
Characteristics of methylome and the regulatory mechanism of DNA methylation in tanshinone biosynthesis.
Hortic Res. 2023 May 31;10(7):uhad114. doi: 10.1093/hr/uhad114. eCollection 2023 Jul.
9
On the prediction of non-CG DNA methylation using machine learning.
NAR Genom Bioinform. 2023 May 17;5(2):lqad045. doi: 10.1093/nargab/lqad045. eCollection 2023 Jun.
10
DNA methylation signatures of duplicate gene evolution in angiosperms.
Plant Physiol. 2023 Aug 3;192(4):2883-2901. doi: 10.1093/plphys/kiad220.

本文引用的文献

2
Crop Epigenomics: Identifying, Unlocking, and Harnessing Cryptic Variation in Crop Genomes.
Mol Plant. 2015 Jun;8(6):860-70. doi: 10.1016/j.molp.2015.01.021. Epub 2015 Jan 29.
3
Mechanism of DNA methylation-directed histone methylation by KRYPTONITE.
Mol Cell. 2014 Aug 7;55(3):495-504. doi: 10.1016/j.molcel.2014.06.009. Epub 2014 Jul 10.
5
RNA-directed DNA methylation: an epigenetic pathway of increasing complexity.
Nat Rev Genet. 2014 Jun;15(6):394-408. doi: 10.1038/nrg3683. Epub 2014 May 8.
6
Non-CG methylation patterns shape the epigenetic landscape in Arabidopsis.
Nat Struct Mol Biol. 2014 Jan;21(1):64-72. doi: 10.1038/nsmb.2735. Epub 2013 Dec 15.
7
Genome-wide analysis of DNA methylation in soybean.
Mol Plant. 2013 Nov;6(6):1961-74. doi: 10.1093/mp/sst123. Epub 2013 Aug 21.
8
10
The Cassava Genome: Current Progress, Future Directions.
Trop Plant Biol. 2012 Mar;5(1):88-94. doi: 10.1007/s12042-011-9088-z. Epub 2012 Jan 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验