State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
Mol Plant. 2013 Nov;6(6):1961-74. doi: 10.1093/mp/sst123. Epub 2013 Aug 21.
Cytosine methylation is an important mechanism for dynamical regulation of gene expression and transposable element (TE) mobility during plant developmental processes. Here, we identified the transcription start sites of genes using high-throughput sequencing and then analyzed the DNA methylation status in soybean roots, stems, leaves, and cotyledons of developing seeds at single-base resolution. Profiling of DNA methylation in different organs revealed 2162 differentially methylated regions among organs, and a portion of hypomethylated regions were correlated with high expression of neighboring genes. Because of the different distribution of class I TEs (retrotransposons) and class II TEs (DNA transposons), the promoters of the lowest-expressed genes showed higher levels of CG and CHG methylation but a lower level of CHH methylation. We further found that the CHH methylation level of class II TEs was higher than class I TEs, possibly due to the presence of more smRNAs in class II TEs. In cotyledons of developing seeds, smRNA abundance was roughly positively correlated with hypermethylated regions but negatively related to hypomethylated regions. These studies provide significant insights into the complicated interplays among DNA methylation, smRNA abundance, TE distribution, and gene expression in soybean.
胞嘧啶甲基化是植物发育过程中动态调控基因表达和转座元件(TE)移动的重要机制。在这里,我们使用高通量测序确定了基因的转录起始位点,然后在单碱基分辨率下分析了大豆根、茎、叶和发育种子子叶中的 DNA 甲基化状态。不同器官的 DNA 甲基化分析显示,器官之间有 2162 个差异甲基化区域,部分低甲基化区域与邻近基因的高表达相关。由于 I 类 TE(逆转座子)和 II 类 TE(DNA 转座子)的分布不同,表达最低的基因的启动子表现出更高水平的 CG 和 CHG 甲基化,但 CHH 甲基化水平较低。我们进一步发现,II 类 TE 的 CHH 甲基化水平高于 I 类 TE,这可能是由于 II 类 TE 中存在更多的 smRNA。在发育种子的子叶中,smRNA 丰度与高甲基化区域大致呈正相关,与低甲基化区域呈负相关。这些研究为大豆中 DNA 甲基化、smRNA 丰度、TE 分布和基因表达之间复杂的相互作用提供了重要的见解。