Imam Saheed, Schäuble Sascha, Valenzuela Jacob, López García de Lomana Adrián, Carter Warren, Price Nathan D, Baliga Nitin S
Institute for Systems Biology, 401 Terry Ave N, Seattle, WA, 98109, USA.
Jena University Language & Information Engineering (JULIE) Lab, Friedrich-Schiller-University Jena, Jena, 07743, Germany.
Plant J. 2015 Dec;84(6):1239-56. doi: 10.1111/tpj.13059. Epub 2015 Nov 30.
Microalgae have reemerged as organisms of prime biotechnological interest due to their ability to synthesize a suite of valuable chemicals. To harness the capabilities of these organisms, we need a comprehensive systems-level understanding of their metabolism, which can be fundamentally achieved through large-scale mechanistic models of metabolism. In this study, we present a revised and significantly improved genome-scale metabolic model for the widely-studied microalga, Chlamydomonas reinhardtii. The model, iCre1355, represents a major advance over previous models, both in content and predictive power. iCre1355 encompasses a broad range of metabolic functions encoded across the nuclear, chloroplast and mitochondrial genomes accounting for 1355 genes (1460 transcripts), 2394 and 1133 metabolites. We found improved performance over the previous metabolic model based on comparisons of predictive accuracy across 306 phenotypes (from 81 mutants), lipid yield analysis and growth rates derived from chemostat-grown cells (under three conditions). Measurement of macronutrient uptake revealed carbon and phosphate to be good predictors of growth rate, while nitrogen consumption appeared to be in excess. We analyzed high-resolution time series transcriptomics data using iCre1355 to uncover dynamic pathway-level changes that occur in response to nitrogen starvation and changes in light intensity. This approach enabled accurate prediction of growth rates, the cessation of growth and accumulation of triacylglycerols during nitrogen starvation, and the temporal response of different growth-associated pathways to increased light intensity. Thus, iCre1355 represents an experimentally validated genome-scale reconstruction of C. reinhardtii metabolism that should serve as a useful resource for studying the metabolic processes of this and related microalgae.
微藻因其能够合成一系列有价值的化学物质,再次成为生物技术领域备受关注的生物体。为了利用这些生物体的能力,我们需要从系统层面全面了解它们的新陈代谢,而这从根本上可以通过大规模的新陈代谢机制模型来实现。在本研究中,我们为广泛研究的微藻莱茵衣藻提出了一个经过修订且显著改进的基因组规模代谢模型。该模型iCre1355在内容和预测能力方面都比以前的模型有了重大进展。iCre1355涵盖了核基因组、叶绿体基因组和线粒体基因组中编码的广泛代谢功能,涉及1355个基因(1460个转录本)、2394种和1133种代谢物。通过对306种表型(来自81个突变体)的预测准确性比较、脂质产量分析以及恒化器培养细胞(在三种条件下)的生长速率比较,我们发现该模型比之前的代谢模型性能有所提高。大量营养素摄取的测量结果表明,碳和磷酸盐是生长速率的良好预测指标,而氮的消耗似乎过量。我们使用iCre1355分析了高分辨率时间序列转录组学数据,以揭示响应氮饥饿和光照强度变化时发生的动态途径水平变化。这种方法能够准确预测生长速率、氮饥饿期间生长的停止和三酰甘油的积累,以及不同生长相关途径对光照强度增加的时间响应。因此,iCre1355代表了经过实验验证的莱茵衣藻新陈代谢的基因组规模重建,应成为研究这种及相关微藻代谢过程的有用资源。