Suppr超能文献

使用多元正态隐马尔可夫模型对生物标记数据中的潜在行为状态进行目标分类。

Objective classification of latent behavioral states in bio-logging data using multivariate-normal hidden Markov models.

出版信息

Ecol Appl. 2015 Jul;25(5):1244-58. doi: 10.1890/14-0862.1.

Abstract

Analysis of complex time-series data from ecological system study requires quantitative tools for objective description and classification. These tools must take into account largely ignored problems of bias in manual classification, autocorrelation, and noise. Here we describe a method using existing estimation techniques for multivariate-normal hidden Markov models (HMMs) to develop such a classification. We use high-resolution behavioral data from bio-loggers attached to free-roaming pelagic tuna as an example. Observed patterns are assumed to be generated by an unseen Markov process that switches between several multivariate-normal distributions. Our approach is assessed in two parts. The first uses simulation experiments, from which the ability of the HMM to estimate known parameter values is examined using artificial time series of data consistent with hypotheses about pelagic predator foraging ecology. The second is the application to time series of continuous vertical movement data from yellowfin and bigeye tuna taken from tuna tagging experiments. These data were compressed into summary metrics capturing the variation of patterns in diving behavior and formed into a multivariate time series used to estimate a HMM. Each observation was associated with covariate information incorporating the effect of day and night on behavioral switching. Known parameter values were well recovered by the HMMs in our simulation experiments, resulting in mean correct classification rates of 90-97%, although some variance-covariance parameters were estimated less accurately. HMMs with two distinct behavioral states were selected for every time series of real tuna data, predicting a shallow warm state, which was similar across all individuals, and a deep colder state, which was more variable. Marked diurnal behavioral switching was predicted, consistent with many previous empirical studies on tuna. HMMs provide easily interpretable models for the objective classification of many different types of noisy autocorrelated data, as typically found across a range of ecological systems. Summarizing time-series data into a multivariate assemblage of dimensions relevant to the desired classification provides a means to examine these data in an appropriate behavioral space. We discuss how outputs of these models can be applied to bio-logging and other imperfect behavioral data, providing easily interpretable models for hypothesis testing.

摘要

生态系统研究中复杂时间序列数据的分析需要定量工具来进行客观描述和分类。这些工具必须考虑到手动分类中被忽视的、存在偏差、自相关和噪声等问题。在这里,我们描述了一种使用现有的多元正态隐马尔可夫模型(HMM)估计技术来开发这种分类的方法。我们以附着在自由游动的大洋性金枪鱼身上的生物记录仪的高分辨率行为数据为例。观测到的模式被假设为由一个未知的马尔可夫过程产生,该过程在几个多元正态分布之间切换。我们的方法分为两部分进行评估。第一部分使用模拟实验,通过与大洋性捕食者觅食生态学假设一致的人工时间序列数据来检验 HMM 估计已知参数值的能力。第二部分是将来自金枪鱼标记实验的黄鳍金枪鱼和大眼金枪鱼连续垂直运动数据的时间序列应用于 HMM。这些数据被压缩成捕捉潜水行为模式变化的摘要指标,并形成一个多元时间序列,用于估计 HMM。每个观测值都与包含行为切换对日夜影响的协变量信息相关联。在我们的模拟实验中,HMM 很好地恢复了已知参数值,导致平均正确分类率为 90-97%,尽管某些方差协方差参数的估计不太准确。对于每一条真实金枪鱼数据的时间序列,都选择了具有两个不同行为状态的 HMM,预测了一个浅层温暖状态,所有个体都相似,以及一个更深更冷的状态,这个状态更具可变性。预测到了明显的昼夜行为切换,这与许多关于金枪鱼的先前经验研究一致。HMM 为许多不同类型的嘈杂自相关数据的客观分类提供了易于解释的模型,这些数据通常存在于各种生态系统中。将时间序列数据概括为与所需分类相关的多元组合维度,为在适当的行为空间中检查这些数据提供了一种手段。我们讨论了如何将这些模型的输出应用于生物记录仪和其他不完善的行为数据,为假设检验提供易于解释的模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验