Suppr超能文献

从短时间生物记录数据中分类行为:以鸟类GPS跟踪为例。

Classifying behavior from short-interval biologging data: An example with GPS tracking of birds.

作者信息

Bergen Silas, Huso Manuela M, Duerr Adam E, Braham Melissa A, Katzner Todd E, Schmuecker Sara, Miller Tricia A

机构信息

Department of Mathematics and Statistics Winona State University Winona Minnesota USA.

U.S. Geological Survey Forest and Rangeland Ecosystem Science Center Corvallis Oregon USA.

出版信息

Ecol Evol. 2022 Feb 7;12(2):e08395. doi: 10.1002/ece3.8395. eCollection 2022 Feb.

Abstract

Recent advances in digital data collection have spurred accumulation of immense quantities of data that have potential to lead to remarkable ecological insight, but that also present analytic challenges. In the case of biologging data from birds, common analytical approaches to classifying movement behaviors are largely inappropriate for these massive data sets.We apply a framework for using -means clustering to classify bird behavior using points from short time interval GPS tracks. -means clustering is a well-known and computationally efficient statistical tool that has been used in animal movement studies primarily for clustering segments of consecutive points. To illustrate the utility of our approach, we apply -means clustering to six focal variables derived from GPS data collected at 1-11 s intervals from free-flying bald eagles () throughout the state of Iowa, USA. We illustrate how these data can be used to identify behaviors and life-stage- and age-related variation in behavior.After filtering for data quality, the -means algorithm identified four clusters in >2 million GPS telemetry data points. These four clusters corresponded to three movement states: ascending, flapping, and gliding flight; and one non-moving state: perching. Mapping these states illustrated how they corresponded tightly to expectations derived from natural history observations; for example, long periods of ascending flight were often followed by long gliding descents, birds alternated between flapping and gliding flight.The -means clustering approach we applied is both an efficient and effective mechanism to classify and interpret short-interval biologging data to understand movement behaviors. Furthermore, because it can apply to an abundance of very short, irregular, and high-dimensional movement data, it provides insight into small-scale variation in behavior that would not be possible with many other analytical approaches.

摘要

数字数据收集方面的最新进展促使大量数据得以积累,这些数据有可能带来显著的生态洞察力,但也带来了分析挑战。就鸟类生物记录数据而言,常用的运动行为分类分析方法在很大程度上不适用于这些海量数据集。我们应用一种基于k均值聚类的框架,利用短时间间隔GPS轨迹中的点来对鸟类行为进行分类。k均值聚类是一种广为人知且计算效率高的统计工具,在动物运动研究中主要用于对连续点的片段进行聚类。为了说明我们方法的实用性,我们将k均值聚类应用于从美国爱荷华州自由飞行的白头鹰以1 - 11秒间隔收集的GPS数据中得出的六个关键变量。我们展示了这些数据如何用于识别行为以及行为中与生命阶段和年龄相关的变化。在对数据质量进行筛选后,k均值算法在超过200万个GPS遥测数据点中识别出四个聚类。这四个聚类对应三种运动状态:上升、振翅和滑翔飞行;以及一种静止状态:栖息。绘制这些状态表明它们与从自然历史观察得出的预期紧密对应;例如,长时间的上升飞行之后往往是长时间的滑翔下降,鸟类在振翅飞行和滑翔飞行之间交替。我们应用的k均值聚类方法是一种有效且高效的机制,用于对短时间间隔的生物记录数据进行分类和解释,以了解运动行为。此外,由于它可以应用于大量非常短、不规则且高维的运动数据,它能够洞察到许多其他分析方法无法实现的行为小规模变化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23c0/8819645/4cde2d2cfed6/ECE3-12-e08395-g005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验