Suppr超能文献

一种用于非点源污染控制措施目标设定的自适应优化方法。

An auto-adaptive optimization approach for targeting nonpoint source pollution control practices.

作者信息

Chen Lei, Wei Guoyuan, Shen Zhenyao

机构信息

State Key Laboratory of Water Environment, School of Environment, Beijing Normal University, Beijing 100875, P.R. China.

出版信息

Sci Rep. 2015 Oct 21;5:15393. doi: 10.1038/srep15393.

Abstract

To solve computationally intensive and technically complex control of nonpoint source pollution, the traditional genetic algorithm was modified into an auto-adaptive pattern, and a new framework was proposed by integrating this new algorithm with a watershed model and an economic module. Although conceptually simple and comprehensive, the proposed algorithm would search automatically for those Pareto-optimality solutions without a complex calibration of optimization parameters. The model was applied in a case study in a typical watershed of the Three Gorges Reservoir area, China. The results indicated that the evolutionary process of optimization was improved due to the incorporation of auto-adaptive parameters. In addition, the proposed algorithm outperformed the state-of-the-art existing algorithms in terms of convergence ability and computational efficiency. At the same cost level, solutions with greater pollutant reductions could be identified. From a scientific viewpoint, the proposed algorithm could be extended to other watersheds to provide cost-effective configurations of BMPs.

摘要

为解决非点源污染计算量大且技术复杂的控制问题,将传统遗传算法改进为自适应模式,并通过将这种新算法与流域模型和经济模块相结合,提出了一个新框架。尽管该算法在概念上简单且全面,但无需对优化参数进行复杂校准即可自动搜索那些帕累托最优解。该模型应用于中国三峡库区典型流域的案例研究。结果表明,由于纳入了自适应参数,优化的进化过程得到了改善。此外,该算法在收敛能力和计算效率方面优于现有最先进的算法。在相同成本水平下,可以识别出污染物削减量更大的解决方案。从科学角度来看,该算法可扩展到其他流域,以提供具有成本效益的最佳管理措施配置。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe1b/4613870/00d67f2e5240/srep15393-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验