Suppr超能文献

α-生育酚旨在保护多不饱和磷脂:分子动力学模拟

α-Tocopherol Is Well Designed to Protect Polyunsaturated Phospholipids: MD Simulations.

作者信息

Leng Xiaoling, Kinnun Jacob J, Marquardt Drew, Ghefli Mikel, Kučerka Norbert, Katsaras John, Atkinson Jeffrey, Harroun Thad A, Feller Scott E, Wassall Stephen R

机构信息

Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana.

Department of Physics, Brock University, St. Catharines, Ontario, Canada; Institute of Molecular Biosciences, University of Graz, Graz, Austria.

出版信息

Biophys J. 2015 Oct 20;109(8):1608-18. doi: 10.1016/j.bpj.2015.08.032.

Abstract

The presumptive function for alpha-tocopherol (αtoc) in membranes is to protect polyunsaturated lipids against oxidation. Although the chemistry of the process is well established, the role played by molecular structure that we address here with atomistic molecular-dynamics simulations remains controversial. The simulations were run in the constant particle NPT ensemble on hydrated lipid bilayers composed of SDPC (1-stearoyl-2-docosahexaenoylphosphatidylcholine, 18:0-22:6PC) and SOPC (1-stearoyl-2-oleoylphosphatidylcholine, 18:0-18:1PC) in the presence of 20 mol % αtoc at 37°C. SDPC with SA (stearic acid) for the sn-1 chain and DHA (docosahexaenoic acid) for the sn-2 chain is representative of polyunsaturated phospholipids, while SOPC with OA (oleic acid) substituted for the sn-2 chain serves as a monounsaturated control. Solid-state (2)H nuclear magnetic resonance and neutron diffraction experiments provide validation. The simulations demonstrate that high disorder enhances the probability that DHA chains at the sn-2 position in SDPC rise up to the bilayer surface, whereby they encounter the chromanol group on αtoc molecules. This behavior is reflected in the van der Waals energy of interaction between αtoc and acyl chains, and illustrated by density maps of distribution for acyl chains around αtoc molecules that were constructed. An ability to more easily penetrate deep into the bilayer is another attribute conferred upon the chromanol group in αtoc by the high disorder possessed by DHA. By examining the trajectory of single molecules, we found that αtoc flip-flops across the SDPC bilayer on a submicrosecond timescale that is an order-of-magnitude greater than in SOPC. Our results reveal mechanisms by which the sacrificial hydroxyl group on the chromanol group can trap lipid peroxyl radicals within the interior and near the surface of a polyunsaturated membrane. At the same time, water-soluble reducing agents that regenerate αtoc can access the chromanol group when it locates at the surface.

摘要

α-生育酚(αtoc)在细胞膜中的假定功能是保护多不饱和脂质免受氧化。尽管该过程的化学原理已得到充分确立,但我们在此通过原子分子动力学模拟研究的分子结构所起的作用仍存在争议。模拟在恒定粒子数的NPT系综中进行,体系为含有20 mol% αtoc的水合脂质双层,该脂质双层由SDPC(1-硬脂酰-2-二十二碳六烯酰磷脂酰胆碱,18:0-22:6PC)和SOPC(1-硬脂酰-2-油酰磷脂酰胆碱,18:0-18:1PC)组成,温度为37°C。sn-1链为SA(硬脂酸)且sn-2链为DHA(二十二碳六烯酸)的SDPC代表多不饱和磷脂,而sn-2链被OA(油酸)取代的SOPC用作单不饱和对照。固态(2)H核磁共振和中子衍射实验提供了验证。模拟表明,高无序性增加了SDPC中sn-2位的DHA链上升到双层表面的概率,从而使其与αtoc分子上的色满醇基团相遇。这种行为反映在αtoc与酰基链之间的范德华相互作用能中,并通过构建的αtoc分子周围酰基链分布的密度图得以说明。DHA具有的高无序性赋予αtoc分子中的色满醇基团的另一个特性是更容易深入双层内部。通过检查单个分子的轨迹,我们发现αtoc在亚微秒时间尺度内跨越SDPC双层翻转,这比在SOPC中快一个数量级。我们的结果揭示了色满醇基团上的牺牲性羟基能够在多不饱和膜内部和表面附近捕获脂质过氧自由基的机制。同时,当色满醇基团位于表面时,能使αtoc再生的水溶性还原剂可以接近该基团。

相似文献

1
α-Tocopherol Is Well Designed to Protect Polyunsaturated Phospholipids: MD Simulations.
Biophys J. 2015 Oct 20;109(8):1608-18. doi: 10.1016/j.bpj.2015.08.032.
2
Vitamin E Has Reduced Affinity for a Polyunsaturated Phospholipid: An Umbrella Sampling Molecular Dynamics Simulations Study.
J Phys Chem B. 2018 Sep 6;122(35):8351-8358. doi: 10.1021/acs.jpcb.8b05016. Epub 2018 Aug 28.
3
Molecular organization in mixed SOPC and SDPC model membranes: Water permeability studies of polyunsaturated lipid bilayers.
Biochim Biophys Acta Biomembr. 2020 Sep 1;1862(9):183365. doi: 10.1016/j.bbamem.2020.183365. Epub 2020 May 23.
4
Alpha-tocopherol inhibits pore formation in oxidized bilayers.
Phys Chem Chem Phys. 2017 Feb 22;19(8):5699-5704. doi: 10.1039/c6cp08051k.
5
Structure and dynamics of cholesterol-containing polyunsaturated lipid membranes studied by neutron diffraction and NMR.
J Membr Biol. 2011 Jan;239(1-2):63-71. doi: 10.1007/s00232-010-9326-6. Epub 2010 Dec 14.
6
Improving the CHARMM force field for polyunsaturated fatty acid chains.
J Phys Chem B. 2012 Aug 9;116(31):9424-31. doi: 10.1021/jp304056p. Epub 2012 Jul 3.
7
The structures of polyunsaturated lipid bilayers by joint refinement of neutron and X-ray scattering data.
Chem Phys Lipids. 2020 Jul;229:104892. doi: 10.1016/j.chemphyslip.2020.104892. Epub 2020 Feb 12.

引用本文的文献

2
Determining the rates of α-tocopherol movement in DPPC vesicles using small-angle neutron scattering.
Biophys J. 2025 Feb 18;124(4):590-596. doi: 10.1016/j.bpj.2025.01.008. Epub 2025 Jan 17.
4
Evaluation of the Protective Role of Vitamin E against ROS-Driven Lipid Oxidation in Model Cell Membranes.
Antioxidants (Basel). 2024 Sep 20;13(9):1135. doi: 10.3390/antiox13091135.
5
The evidence to date: implications of l-ascorbic acid in the pathophysiology of aging.
J Physiol Sci. 2024 May 11;74(1):29. doi: 10.1186/s12576-024-00922-7.
6
Potential role of tocopherol in protecting crop plants against abiotic stresses.
Physiol Mol Biol Plants. 2023 Oct;29(10):1563-1575. doi: 10.1007/s12298-023-01354-0. Epub 2023 Sep 20.
7
Spontaneous Transfer of Indocyanine Green from Liposomes to Albumin Is Inhibited by the Antioxidant α-Tocopherol.
Langmuir. 2022 Oct 4;38(39):11950-11961. doi: 10.1021/acs.langmuir.2c01715. Epub 2022 Sep 20.
8
Antioxidant and Neuroprotective Activity of Vitamin E Homologues: In Vitro Study.
Metabolites. 2022 Jun 30;12(7):608. doi: 10.3390/metabo12070608.
9
An Interactive Review on the Role of Tocotrienols in the Neurodegenerative Disorders.
Front Nutr. 2021 Oct 26;8:754086. doi: 10.3389/fnut.2021.754086. eCollection 2021.
10
Molecular dynamics simulation study of the positioning and dynamics of α-tocopherol in phospholipid bilayers.
Eur Biophys J. 2021 Sep;50(6):889-903. doi: 10.1007/s00249-021-01548-y. Epub 2021 May 29.

本文引用的文献

1
Lipid Peroxidation in Membranes: The Peroxyl Radical Does Not "Float".
J Phys Chem Lett. 2014 May 15;5(10):1653-8. doi: 10.1021/jz500502q. Epub 2014 Apr 25.
2
α-Tocopherol's Location in Membranes Is Not Affected by Their Composition.
Langmuir. 2015 Apr 21;31(15):4464-72. doi: 10.1021/la502605c. Epub 2014 Oct 29.
3
How polyunsaturated fatty acids modify molecular organization in membranes: insight from NMR studies of model systems.
Biochim Biophys Acta. 2015 Jan;1848(1 Pt B):211-9. doi: 10.1016/j.bbamem.2014.04.020. Epub 2014 May 9.
4
Dimyristoyl phosphatidylcholine: a remarkable exception to α-tocopherol's membrane presence.
J Am Chem Soc. 2014 Jan 8;136(1):203-10. doi: 10.1021/ja408288f. Epub 2013 Dec 18.
5
Interactions between α-tocopherol, polyunsaturated fatty acids, and lipoxygenases during embryogenesis.
Free Radic Biol Med. 2014 Jan;66:13-9. doi: 10.1016/j.freeradbiomed.2013.07.039. Epub 2013 Aug 3.
6
Vitamin E trafficking in neurologic health and disease.
Annu Rev Nutr. 2013;33:87-103. doi: 10.1146/annurev-nutr-071812-161252. Epub 2013 Apr 29.
7
Tocopherol activity correlates with its location in a membrane: a new perspective on the antioxidant vitamin E.
J Am Chem Soc. 2013 May 22;135(20):7523-33. doi: 10.1021/ja312665r. Epub 2013 May 8.
8
Role of vitamin E as a lipid-soluble peroxyl radical scavenger: in vitro and in vivo evidence.
Free Radic Biol Med. 2014 Jan;66:3-12. doi: 10.1016/j.freeradbiomed.2013.03.022. Epub 2013 Apr 2.
9
A history of vitamin E.
Ann Nutr Metab. 2012;61(3):207-12. doi: 10.1159/000343106. Epub 2012 Nov 26.
10
Docosahexaenoic and eicosapentaenoic acids segregate differently between raft and nonraft domains.
Biophys J. 2012 Jul 18;103(2):228-37. doi: 10.1016/j.bpj.2012.06.016. Epub 2012 Jul 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验