Cooke Dylan F, Stepniewska Iwona, Miller Daniel J, Kaas Jon H, Krubitzer Leah
Center for Neuroscience and Department of Psychology, University of California, Davis, California 95618, and.
Department of Psychology, Vanderbilt University, Nashville, Tennessee 37203.
J Neurosci. 2015 Oct 21;35(42):14406-22. doi: 10.1523/JNEUROSCI.1468-15.2015.
We examined the functional macrocircuitry of frontoparietal networks in the neocortex of prosimian primates (Otolemur garnettii) using a microfluidic thermal regulator to reversibly deactivate selected regions of motor cortex (M1). During deactivation of either forelimb or mouth/face movement domains within M1, we used long-train intracortical microstimulation techniques to evoke movements from the rostral division of posterior parietal cortex (PPCr). We found that deactivation of M1 movement domains in most instances abolished movements evoked in PPCr. The most common effect of deactivating M1 was to abolish evoked movements in a homotopic domain in PPCr. For example, deactivating M1 forelimb lift domains resulted in loss of evoked movement in forelimb domains in PPCr. However, at some sites, we also observed heterotopic effects; deactivating a specific domain in M1 (e.g., forelimb lift) resulted in loss of evoked movement in a different movement domain in PPCr (e.g., hand-to-mouth or eye-blink). At most sites examined in PPCr, rewarming M1 resulted in a reestablishment of the baseline movement at the same amplitude as that observed before cooling. However, at some sites, reactivation did not result in a return to baseline movement or to the full amplitude of the baseline movement. We discuss our findings in the context of frontoparietal circuits and how they may subserve a repertoire of ecologically relevant behaviors.
The posterior parietal cortex (PPC) of primates integrates sensory information used to guide movements. Different modules within PPC and motor cortex (M1) appear to control various motor behaviors (e.g., reaching, defense, and feeding). How these modules work together may vary across species and may explain differences in dexterity and even the capacity for tool use. We investigated the functional connectivity of these modules in galagos, a prosimian primate with relatively simple frontoparietal circuitry. By deactivating a reaching module in M1, we interfered with the function of similar PPC modules and occasionally unrelated PPC modules as well (e.g., eye blink). This circuitry in galagos, therefore, is more complex than in nonprimates, indicating that it has been altered with the expansion of primate PPC.
我们使用微流体热调节器可逆性地失活运动皮层(M1)的选定区域,研究了原猴亚目灵长类动物(加氏婴猴)新皮层中额顶叶网络的功能性宏观回路。在失活M1内的前肢或口/面部运动区域期间,我们使用长串皮质内微刺激技术从后顶叶皮层(PPCr)的嘴侧部分诱发运动。我们发现,在大多数情况下,失活M1运动区域会消除PPCr中诱发的运动。失活M1最常见的效应是消除PPCr中同型区域诱发的运动。例如,失活M1的前肢抬起区域会导致PPCr中前肢区域诱发运动的丧失。然而,在某些位点,我们也观察到异位效应;失活M1中的特定区域(例如前肢抬起)会导致PPCr中不同运动区域(例如手到嘴或眨眼)诱发运动的丧失。在PPCr检查的大多数位点,重新加热M1会导致基线运动以与冷却前观察到的相同幅度重新建立。然而,在某些位点,重新激活并未导致恢复到基线运动或基线运动的全幅度。我们在额顶叶回路的背景下讨论我们的发现,以及它们如何可能有助于一系列与生态相关的行为。
灵长类动物的后顶叶皮层(PPC)整合用于指导运动的感觉信息。PPC和运动皮层(M1)内的不同模块似乎控制各种运动行为(例如伸手、防御和进食)。这些模块如何协同工作可能因物种而异,并可能解释灵活性差异甚至工具使用能力的差异。我们研究了这些模块在婴猴中的功能连接,婴猴是一种原猴亚目灵长类动物,其额顶叶回路相对简单。通过失活M1中的一个伸手模块,我们干扰了类似的PPC模块以及偶尔不相关的PPC模块(例如眨眼)的功能。因此,婴猴中的这种回路比非灵长类动物中的更复杂,表明它随着灵长类动物PPC的扩展而发生了改变。