Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, Division of Biological Sciences, University of California, San Diego, California 92093,
Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125.
J Neurosci. 2014 Sep 17;34(38):12884-92. doi: 10.1523/JNEUROSCI.3719-13.2014.
Coordinated eye movements are crucial for precision control of our hands. A commonly believed neural mechanism underlying eye-hand coordination is interaction between the neural networks controlling each effector, exchanging, and matching information, such as movement target location and onset time. Alternatively, eye-hand coordination may result simply from common inputs to independent eye and hand control pathways. Thus far, it remains unknown whether and where either of these two possible mechanisms exists. A candidate location for the former mechanism, interpathway communication, includes the posterior parietal cortex (PPC) where distinct effector-specific areas reside. If the PPC were within the network for eye-hand coordination, perturbing it would affect both eye and hand movements that are concurrently planned. In contrast, if eye-hand coordination arises solely from common inputs, perturbing one effector pathway, e.g., the parietal reach region (PRR), would not affect the other effector. To test these hypotheses, we inactivated part of PRR in the macaque, located in the medial bank of the intraparietal sulcus encompassing the medial intraparietal area and area 5V. When each effector moved alone, PRR inactivation shortened reach but not saccade amplitudes, compatible with the known reach-selective activity of PRR. However, when both effectors moved concurrently, PRR inactivation shortened both reach and saccade amplitudes, and decoupled their reaction times. Therefore, consistent with the interpathway communication hypothesis, we propose that the planning of concurrent eye and hand movements causes the spatial information in PRR to influence the otherwise independent eye control pathways, and that their temporal coupling requires an intact PRR.
协调的眼球运动对于精确控制我们的手部至关重要。一种被普遍认为的眼手协调的神经机制是控制每个效应器的神经网络之间的相互作用,交换和匹配信息,如运动目标的位置和起始时间。或者,眼手协调可能仅仅是由于独立的眼和手控制途径的共同输入而产生的。到目前为止,尚不清楚这两种可能的机制中是否存在以及存在于何处。前一种机制——通路间通讯的一个候选位置是位于不同效应器特异性区域的后顶叶皮层(PPC)。如果 PPC 位于眼手协调的网络中,那么干扰它将同时影响眼动和手动运动。相比之下,如果眼手协调仅仅来自共同的输入,那么干扰一个效应器途径,例如顶壁到达区(PRR),就不会影响另一个效应器。为了检验这些假设,我们在猕猴中部分失活了 PRR,位于顶内沟的内侧壁,包含内侧顶内区和 5 区。当每个效应器单独运动时,PRR 失活缩短了到达距离,但不影响扫视幅度,这与 PRR 已知的到达选择性活动一致。然而,当两个效应器同时运动时,PRR 失活缩短了到达和扫视的幅度,并使它们的反应时间解耦。因此,与通路间通讯假说一致,我们提出,同时进行的眼和手运动的规划导致 PRR 中的空间信息影响到其他独立的眼控制途径,并且它们的时间耦合需要一个完整的 PRR。