Suppr超能文献

乳酸通过丙酮酸激酶的逆向反应促进骨骼肌中的甘油生成和糖异生。

Lactate Contributes to Glyceroneogenesis and Glyconeogenesis in Skeletal Muscle by Reversal of Pyruvate Kinase.

作者信息

Jin Eunsook S, Sherry A Dean, Malloy Craig R

机构信息

From the Advanced Imaging Research Center, Department of Internal Medicine, and

From the Advanced Imaging Research Center, Radiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, Department of Chemistry, University of Texas at Dallas, Richardson, Texas 75080, and.

出版信息

J Biol Chem. 2015 Dec 18;290(51):30486-97. doi: 10.1074/jbc.M115.689174. Epub 2015 Oct 21.

Abstract

Phosphoenolpyruvate (PEP) generated from pyruvate is required for de novo synthesis of glycerol and glycogen in skeletal muscle. One possible pathway involves synthesis of PEP from the citric acid cycle intermediates via PEP carboxykinase, whereas another could involve reversal of pyruvate kinase (PK). Earlier studies have reported that reverse flux through PK can contribute carbon precursors for glycogen synthesis in muscle, but the physiological importance of this pathway remains uncertain especially in the setting of high plasma glucose. In addition, although PEP is a common intermediate for both glyconeogenesis and glyceroneogenesis, the importance of reverse PK in de novo glycerol synthesis has not been examined. Here we studied the contribution of reverse PK to synthesis of glycogen and the glycerol moiety of acylglycerols in skeletal muscle of animals with high plasma glucose. Rats received a single intraperitoneal bolus of glucose, glycerol, and lactate under a fed or fasted state. Only one of the three substrates was (13)C-labeled in each experiment. After 3 h of normal awake activity, the animals were sacrificed, and the contribution from each substrate to glycogen and the glycerol moiety of acylglycerols was evaluated. The fraction of (13)C labeling in glycogen and the glycerol moiety exceeded the possible contribution from either plasma glucose or muscle oxaloacetate. The reverse PK served as a common route for both glyconeogenesis and glyceroneogenesis in the skeletal muscle of rats with high plasma glucose. The activity of pyruvate carboxylase was low in muscle, and no PEP carboxykinase activity was detected.

摘要

丙酮酸生成的磷酸烯醇式丙酮酸(PEP)是骨骼肌中甘油和糖原从头合成所必需的。一种可能的途径涉及通过磷酸烯醇式丙酮酸羧激酶从柠檬酸循环中间体合成PEP,而另一种途径可能涉及丙酮酸激酶(PK)的逆向反应。早期研究报道,PK的逆向通量可为肌肉中的糖原合成提供碳前体,但该途径的生理重要性仍不确定,尤其是在高血糖情况下。此外,虽然PEP是糖异生和甘油生成的共同中间体,但逆向PK在甘油从头合成中的重要性尚未得到研究。在这里,我们研究了逆向PK对高血糖动物骨骼肌中糖原和酰基甘油甘油部分合成的贡献。大鼠在进食或禁食状态下接受单次腹腔注射葡萄糖、甘油和乳酸。在每个实验中,三种底物中只有一种用(13)C标记。正常清醒活动3小时后,处死动物,并评估每种底物对糖原和酰基甘油甘油部分的贡献。糖原和甘油部分中(13)C标记的比例超过了血浆葡萄糖或肌肉草酰乙酸可能的贡献。逆向PK是高血糖大鼠骨骼肌中糖异生和甘油生成的共同途径。肌肉中丙酮酸羧化酶的活性较低,未检测到磷酸烯醇式丙酮酸羧激酶活性。

相似文献

1
Lactate Contributes to Glyceroneogenesis and Glyconeogenesis in Skeletal Muscle by Reversal of Pyruvate Kinase.
J Biol Chem. 2015 Dec 18;290(51):30486-97. doi: 10.1074/jbc.M115.689174. Epub 2015 Oct 21.
2
Evidence for reverse flux through pyruvate kinase in skeletal muscle.
Am J Physiol Endocrinol Metab. 2009 Apr;296(4):E748-57. doi: 10.1152/ajpendo.90935.2008. Epub 2009 Feb 3.
3
Metabolism of glycerol, glucose, and lactate in the citric acid cycle prior to incorporation into hepatic acylglycerols.
J Biol Chem. 2013 May 17;288(20):14488-14496. doi: 10.1074/jbc.M113.461947. Epub 2013 Apr 9.
4
Glyconeogenic pathway in isolated skeletal muscles of rats.
Can J Physiol Pharmacol. 2002 Feb;80(2):164-9. doi: 10.1139/y02-013.
5
A role for mitochondrial phosphoenolpyruvate carboxykinase (PEPCK-M) in the regulation of hepatic gluconeogenesis.
J Biol Chem. 2014 Mar 14;289(11):7257-63. doi: 10.1074/jbc.C113.544759. Epub 2014 Feb 4.
7
Use of labeling pattern of liver glutamate to calculate rates of citric acid cycle and gluconeogenesis.
Am J Physiol. 1997 Jan;272(1 Pt 1):E51-8. doi: 10.1152/ajpendo.1997.272.1.E51.
8
Glyconeogenesis from lactate in frog striated muscle.
Am J Physiol. 1979 Nov;237(5):C231-6. doi: 10.1152/ajpcell.1979.237.5.C231.
10
Metabolic networks to generate pyruvate, PEP and ATP from glycerol in Pseudomonas fluorescens.
Enzyme Microb Technol. 2016 Apr;85:51-6. doi: 10.1016/j.enzmictec.2016.01.007. Epub 2016 Jan 21.

引用本文的文献

1
Pyruvate Dehydrogenase Complex in Neonatal Hypoxic-Ischemic Brain Injury.
ACS Pharmacol Transl Sci. 2023 Dec 22;7(1):42-47. doi: 10.1021/acsptsci.3c00191. eCollection 2024 Jan 12.
2
Lactate metabolism in human health and disease.
Signal Transduct Target Ther. 2022 Sep 1;7(1):305. doi: 10.1038/s41392-022-01151-3.
3
Mitochondrial Transport in Glycolysis and Gluconeogenesis: Achievements and Perspectives.
Int J Mol Sci. 2021 Nov 23;22(23):12620. doi: 10.3390/ijms222312620.
4
Effect of post-exercise lactate administration on glycogen repletion and signaling activation in different types of mouse skeletal muscle.
Curr Res Physiol. 2020 Jul 30;3:34-43. doi: 10.1016/j.crphys.2020.07.002. eCollection 2020 Dec.
5
Tracking the carbons supplying gluconeogenesis.
J Biol Chem. 2020 Oct 16;295(42):14419-14429. doi: 10.1074/jbc.REV120.012758. Epub 2020 Aug 13.

本文引用的文献

1
Metabolism of glycerol, glucose, and lactate in the citric acid cycle prior to incorporation into hepatic acylglycerols.
J Biol Chem. 2013 May 17;288(20):14488-14496. doi: 10.1074/jbc.M113.461947. Epub 2013 Apr 9.
2
Evidence for transaldolase activity in the isolated heart supplied with [U-13C3]glycerol.
J Biol Chem. 2013 Feb 1;288(5):2914-22. doi: 10.1074/jbc.M112.409441. Epub 2012 Dec 12.
3
Evidence for reverse flux through pyruvate kinase in skeletal muscle.
Am J Physiol Endocrinol Metab. 2009 Apr;296(4):E748-57. doi: 10.1152/ajpendo.90935.2008. Epub 2009 Feb 3.
4
Glyceroneogenesis is the dominant pathway for triglyceride glycerol synthesis in vivo in the rat.
J Biol Chem. 2008 Oct 10;283(41):27565-27574. doi: 10.1074/jbc.M804393200. Epub 2008 Jul 28.
7
Differing mechanisms of hepatic glucose overproduction in triiodothyronine-treated rats vs. Zucker diabetic fatty rats by NMR analysis of plasma glucose.
Am J Physiol Endocrinol Metab. 2005 Apr;288(4):E654-62. doi: 10.1152/ajpendo.00365.2004. Epub 2004 Nov 23.
9
PYRUVATE CARBOXYLASE. II. PROPERTIES.
J Biol Chem. 1963 Aug;238:2609-14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验