Zhou Chun, Pourmal Sergei, Pavletich Nikola P
Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States.
Howard Hughes Medical Institute, Memorial Sloan-Kettering Cancer Center, New York, United States.
Elife. 2015 Nov 2;4:e09832. doi: 10.7554/eLife.09832.
The Dna2 nuclease-helicase maintains genomic integrity by processing DNA double-strand breaks, Okazaki fragments and stalled replication forks. Dna2 requires ssDNA ends, and is dependent on the ssDNA-binding protein Rpa, which controls cleavage polarity. Here we present the 2.3 Å structure of intact mouse Dna2 bound to a 15-nucleotide ssDNA. The nuclease active site is embedded in a long, narrow tunnel through which the DNA has to thread. The helicase domain is required for DNA binding but not threading. We also present the structure of a flexibly-tethered Dna2-Rpa interaction that recruits Dna2 to Rpa-coated DNA. We establish that a second Dna2-Rpa interaction is mutually exclusive with Rpa-DNA interactions and mediates the displacement of Rpa from ssDNA. This interaction occurs at the nuclease tunnel entrance and the 5' end of the Rpa-DNA complex. Hence, it only displaces Rpa from the 5' but not 3' end, explaining how Rpa regulates cleavage polarity.
Dna2核酸酶解旋酶通过处理DNA双链断裂、冈崎片段和停滞的复制叉来维持基因组完整性。Dna2需要单链DNA末端,并依赖于控制切割极性的单链DNA结合蛋白Rpa。在此,我们展示了完整的小鼠Dna2与15个核苷酸的单链DNA结合的2.3 Å结构。核酸酶活性位点嵌入在一条长而窄的隧道中,DNA必须穿过该隧道。解旋酶结构域对于DNA结合而非穿入是必需的。我们还展示了一种灵活连接的Dna2-Rpa相互作用的结构,该相互作用将Dna2招募到Rpa包被的DNA上。我们确定,第二种Dna2-Rpa相互作用与Rpa-DNA相互作用相互排斥,并介导Rpa从单链DNA上的置换。这种相互作用发生在核酸酶隧道入口和Rpa-DNA复合物的5'端。因此,它仅从5'端而非3'端置换Rpa,解释了Rpa如何调节切割极性。