Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, Madrid 28049, Spain.
Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia), Cantoblanco, Madrid 28049, Spain.
Nat Chem. 2015 Nov;7(11):927-34. doi: 10.1038/nchem.2363. Epub 2015 Oct 19.
Fullerene anions and cations have unique structural, electronic, magnetic and chemical properties that make them substantially different from neutral fullerenes. Although much theoretical effort has been devoted to characterizing and predicting their properties, this has been limited to a fraction of isomeric forms, mostly for fullerene anions, and has practically ignored fullerene cations. Here we show that the concepts of cage connectivity and frontier π orbitals allow one to understand the relative stability of charged fullerene isomers without performing elaborate quantum chemistry calculations. The latter is not a trivial matter, as the number of possible isomers for a medium-sized fullerene is many more than 100,000. The model correctly predicts the structures observed experimentally and explains why the isolated pentagon rule is often violated for fullerene anions, but the opposite is found for fullerene cations. These predictions are relevant in fields as diverse as astrophysics, electrochemistry and supramolecular chemistry.
富勒烯阴离子和阳离子具有独特的结构、电子、磁性和化学性质,使其与中性富勒烯有很大的不同。尽管已经投入了大量的理论努力来描述和预测它们的性质,但这仅限于一部分异构体形式,主要是富勒烯阴离子,并且实际上忽略了富勒烯阳离子。在这里,我们表明笼状连接和前沿π轨道的概念可以在不进行复杂量子化学计算的情况下理解带电富勒烯异构体的相对稳定性。后者并不是一件简单的事情,因为对于一个中等大小的富勒烯,可能的异构体数量超过 100,000 个。该模型正确地预测了实验观察到的结构,并解释了为什么孤立的五边形规则对于富勒烯阴离子经常被违反,但对于富勒烯阳离子则相反。这些预测在天体物理学、电化学和超分子化学等多个领域都具有重要意义。