Suppr超能文献

富勒烯与生命的起源

Fullerene and the origin of life.

作者信息

Goodman Geoffrey, Gershwin M Eric, Bercovich Dani

机构信息

Human Molecular Genetics and Pharmacogenetics, Migal Biotechnology Institute, Kiryat Shmona, Israel.

出版信息

Isr Med Assoc J. 2012 Oct;14(10):602-6.

Abstract

The role of carbon in the development of life and as the structural backbone of all organisms is universally accepted and an essential part of evolution. However, the molecular basis is largely unknown and the interactions of carbon with nitrogen and oxygen in space are enigmatic. In 1985, the previously unknown form of carbon, coined fullerene, was discovered. We hypothesize that by virtue of the unique properties of fullerene, this hollow, ultra-robust, large, purely carbon molecule was the earliest progenitor of life. It acted as a stable universal biologic template on which small molecules spontaneously assembled and then formed, by further assembly, a surface mantle (here termed rosasome) of larger molecules. We submit that this process, by its inherent flexibility, initiated evolution, allowing the emergence of parallel diverse rosasome lines responding selectively to varying spatial environments. For example, rosasomal lines mantled with nucleotide and peptide layers are conceived as primordial forerunners of the ubiquitous ribosome. Moreover, the parallel independent and interdependent evolution of rosasome lines would be more rapid than sequential development, refute precedence of either DNA or RNA, and explain the evolution of integration of two subunits with different structures and functions in ribosomes and of the triplet nature of the codon. Based on recent astronomical data, this hypothesis supports the concept that life is not a singularity. This concept also suggests a potential vehicle for therapeutics, biotechnology and genetic engineering.

摘要

碳在生命发展过程中的作用以及作为所有生物体的结构骨架已被普遍接受,并且是进化的重要组成部分。然而,其分子基础在很大程度上仍不为人知,碳在太空中与氮和氧的相互作用也令人费解。1985年,发现了一种此前未知的碳形式,即富勒烯。我们假设,凭借富勒烯的独特性质,这种中空、超坚固、大型的纯碳分子是生命最早的祖先。它作为一个稳定的通用生物模板,小分子在其上自发组装,然后通过进一步组装形成由更大分子组成的表面覆盖层(这里称为玫瑰体)。我们认为,这个过程因其固有的灵活性启动了进化,使得出现了平行的、多样的玫瑰体谱系,它们对不同的空间环境有选择性地做出反应。例如,覆盖有核苷酸和肽层的玫瑰体谱系被认为是无处不在的核糖体的原始前身。此外,玫瑰体谱系的平行独立和相互依赖的进化比顺序发展更快,反驳了DNA或RNA的优先地位,并解释了核糖体中具有不同结构和功能的两个亚基的整合进化以及密码子的三联体性质。基于最近的天文数据,这一假设支持了生命并非独一无二的概念。这一概念还暗示了一种用于治疗、生物技术和基因工程的潜在载体。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验