Sun Xiao, Shang Ke, Ming Delie, Tian Jinwen, Ma Jiayi
School of Automation, Huazhong University of Science & Technology, 1037 Luoyu Road, Wuhan 430074, China.
Electronic Information School, Wuhan University, 299 Bayi Road, Wuhan 430072, China.
Sensors (Basel). 2015 Oct 20;15(10):26654-74. doi: 10.3390/s151026654.
Contour detection has been extensively investigated as a fundamental problem in computer vision. In this study, a biologically-inspired candidate weighting framework is proposed for the challenging task of detecting meaningful contours. In contrast to previous models that detect contours from pixels, a modified superpixel generation processing is proposed to generate a contour candidate set and then weigh the candidates by extracting hierarchical visual cues. We extract the low-level visual local cues to weigh the contour intrinsic property and mid-level visual cues on the basis of Gestalt principles for weighting the contour grouping constraint. Experimental results tested on the BSDS benchmark show that the proposed framework exhibits promising performances to capture meaningful contours in complex scenes.
轮廓检测作为计算机视觉中的一个基本问题已得到广泛研究。在本研究中,针对检测有意义轮廓这一具有挑战性的任务,提出了一种受生物启发的候选权重框架。与以往从像素检测轮廓的模型不同,提出了一种改进的超像素生成处理方法来生成轮廓候选集,然后通过提取分层视觉线索对候选轮廓进行加权。我们提取低级视觉局部线索来衡量轮廓的内在属性,并基于格式塔原理提取中级视觉线索来衡量轮廓分组约束。在BSDS基准上进行的实验结果表明,所提出的框架在捕捉复杂场景中有意义的轮廓方面表现出良好的性能。