Suppr超能文献

SLIC 超像素与最先进的超像素方法比较。

SLIC superpixels compared to state-of-the-art superpixel methods.

机构信息

School of Computer and Communication Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2012 Nov;34(11):2274-82. doi: 10.1109/TPAMI.2012.120.

Abstract

Computer vision applications have come to rely increasingly on superpixels in recent years, but it is not always clear what constitutes a good superpixel algorithm. In an effort to understand the benefits and drawbacks of existing methods, we empirically compare five state-of-the-art superpixel algorithms for their ability to adhere to image boundaries, speed, memory efficiency, and their impact on segmentation performance. We then introduce a new superpixel algorithm, simple linear iterative clustering (SLIC), which adapts a k-means clustering approach to efficiently generate superpixels. Despite its simplicity, SLIC adheres to boundaries as well as or better than previous methods. At the same time, it is faster and more memory efficient, improves segmentation performance, and is straightforward to extend to supervoxel generation.

摘要

近年来,计算机视觉应用越来越依赖超像素,但对于什么是好的超像素算法并不总是很清楚。为了了解现有方法的优缺点,我们通过实验比较了五种最先进的超像素算法在贴合图像边界、速度、内存效率以及对分割性能的影响方面的能力。然后,我们引入了一种新的超像素算法,即简单线性迭代聚类(SLIC),它采用了 k-均值聚类方法,能够有效地生成超像素。尽管简单,但 SLIC 与之前的方法一样或更好地贴合边界。同时,它的速度更快、内存效率更高,能够提高分割性能,并且可以很方便地扩展到超体素生成。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验