Suppr超能文献

一种用于磁共振成像(MRI)中一维运动管理研究的MRI兼容平台。

An MRI-compatible platform for one-dimensional motion management studies in MRI.

作者信息

Nofiele Joris, Yuan Qing, Kazem Mohammad, Tatebe Ken, Torres Quinn, Sawant Amit, Pedrosa Ivan, Chopra Rajiv

机构信息

Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.

Sunnybrook Research Institute, Toronto, Ontario, Canada.

出版信息

Magn Reson Med. 2016 Aug;76(2):702-12. doi: 10.1002/mrm.25903. Epub 2015 Oct 23.

Abstract

PURPOSE

Abdominal MRI remains challenging because of respiratory motion. Motion compensation strategies are difficult to compare clinically because of the variability across human subjects. The goal of this study was to evaluate a programmable system for one-dimensional motion management MRI research.

METHODS

A system comprised of a programmable motorized linear stage and computer was assembled and tested in the MRI environment. Tests of the mutual interference between the platform and a whole-body MRI were performed. Organ trajectories generated from a high-temporal resolution scan of a healthy volunteer were used in phantom tests to evaluate the effects of motion on image quality and quantitative MRI measurements.

RESULTS

No interference between the motion platform and the MRI was observed, and reliable motion could be produced across a wide range of imaging conditions. Motion-related artifacts commensurate with motion amplitude, frequency, and waveform were observed. T2 measurement of a kidney lesion in an abdominal phantom showed that its value decreased by 67% with physiologic motion, but could be partially recovered with navigator-based motion-compensation.

CONCLUSION

The motion platform can produce reliable linear motion within a whole-body MRI. The system can serve as a foundation for a research platform to investigate and develop motion management approaches for MRI. Magn Reson Med 76:702-712, 2016. © 2015 Wiley Periodicals, Inc.

摘要

目的

由于呼吸运动,腹部磁共振成像(MRI)仍然具有挑战性。由于不同人体受试者之间存在变异性,运动补偿策略在临床上难以比较。本研究的目的是评估一种用于一维运动管理MRI研究的可编程系统。

方法

组装了一个由可编程电动线性平台和计算机组成的系统,并在MRI环境中进行测试。进行了平台与全身MRI之间相互干扰的测试。在体模测试中使用从健康志愿者的高时间分辨率扫描生成的器官轨迹,以评估运动对图像质量和定量MRI测量的影响。

结果

未观察到运动平台与MRI之间的干扰,并且在广泛的成像条件下可以产生可靠的运动。观察到与运动幅度、频率和波形相称的运动相关伪影。腹部体模中肾脏病变的T2测量显示,在生理运动下其值下降了67%,但通过基于导航器的运动补偿可以部分恢复。

结论

运动平台可以在全身MRI内产生可靠的线性运动。该系统可以作为一个研究平台的基础,用于研究和开发MRI的运动管理方法。《磁共振医学》76:702 - 712, 2016。© 2015威利期刊公司。

相似文献

1
An MRI-compatible platform for one-dimensional motion management studies in MRI.
Magn Reson Med. 2016 Aug;76(2):702-12. doi: 10.1002/mrm.25903. Epub 2015 Oct 23.
2
Robust self-navigated body MRI using dense coil arrays.
Magn Reson Med. 2016 Jul;76(1):197-205. doi: 10.1002/mrm.25858. Epub 2015 Jul 29.
3
Impact of flexible body surface coil and patient table on PET quantification and image quality in integrated PET/MR.
Nuklearmedizin. 2014;53(3):79-87. doi: 10.3413/Nukmed-0608-13-07. Epub 2014 Mar 21.
4
Continuously moving table MRI with golden angle radial sampling.
Magn Reson Med. 2015 Dec;74(6):1690-7. doi: 10.1002/mrm.25531. Epub 2014 Dec 2.
5
Compensation of breathing motion artifacts for MRI with continuously moving table.
Magn Reson Med. 2010 Mar;63(3):701-12. doi: 10.1002/mrm.22162.
6
Variability and bias assessment in breast ADC measurement across multiple systems.
J Magn Reson Imaging. 2016 Oct;44(4):846-55. doi: 10.1002/jmri.25237. Epub 2016 Mar 23.
7
Correction of inter-scan motion artifacts in quantitative R1 mapping by accounting for receive coil sensitivity effects.
Magn Reson Med. 2016 Nov;76(5):1478-1485. doi: 10.1002/mrm.26058. Epub 2015 Nov 26.
8
Whole-body continuously moving table fat-water MRI with dynamic B0 shimming at 3 Tesla.
Magn Reson Med. 2016 Jul;76(1):183-90. doi: 10.1002/mrm.25848. Epub 2015 Jul 21.
9
Simultaneous acquisition of image and navigator slices using CAIPIRINHA for 4D MRI.
Magn Reson Med. 2015 Feb;73(2):669-76. doi: 10.1002/mrm.25134. Epub 2014 Feb 24.
10
Total liver fat quantification using three-dimensional respiratory self-navigated MRI sequence.
Magn Reson Med. 2016 Nov;76(5):1400-1409. doi: 10.1002/mrm.26028. Epub 2015 Nov 20.

引用本文的文献

2
Phantoms for Quantitative Body MRI: a review and discussion of the phantom value.
MAGMA. 2024 Aug;37(4):535-549. doi: 10.1007/s10334-024-01181-8. Epub 2024 Jun 19.
3
Design of a 6-DoF Parallel Robotic Platform for MRI Applications.
J Med Robot Res. 2022 Jun-Sep;7(2-3). doi: 10.1142/s2424905x22410057. Epub 2022 Jun 27.
4
Design of a Patient-Specific Respiratory-Motion-Simulating Platform for In Vitro 4D Flow MRI.
Ann Biomed Eng. 2023 May;51(5):1028-1039. doi: 10.1007/s10439-022-03117-6. Epub 2022 Dec 29.
5
Breath-hold MR-HIFU hyperthermia: phantom and feasibility.
Int J Hyperthermia. 2019;36(1):1084-1097. doi: 10.1080/02656736.2019.1679893.
6
Sweet dreams: How mini-invasive surgery tackles obstructive sleep apnea.
Biomed J. 2019 Apr;42(2):75-79. doi: 10.1016/j.bj.2019.04.005. Epub 2019 May 20.

本文引用的文献

2
Review of MRI positioning devices for guiding focused ultrasound systems.
Int J Med Robot. 2015 Jun;11(2):247-55. doi: 10.1002/rcs.1601. Epub 2014 Jul 7.
4
Investigating the feasibility of rapid MRI for image-guided motion management in lung cancer radiotherapy.
Biomed Res Int. 2014;2014:485067. doi: 10.1155/2014/485067. Epub 2014 Jan 12.
5
Real-time method for motion-compensated MR thermometry and MRgHIFU treatment in abdominal organs.
Magn Reson Med. 2014 Oct;72(4):1087-95. doi: 10.1002/mrm.25017. Epub 2013 Nov 14.
6
Management of respiratory motion in extracorporeal high-intensity focused ultrasound treatment in upper abdominal organs: current status and perspectives.
Cardiovasc Intervent Radiol. 2013 Dec;36(6):1464-1476. doi: 10.1007/s00270-013-0713-0. Epub 2013 Oct 3.
7
Retrospective Rigid Motion Correction in k-Space for Segmented Radial MRI.
IEEE Trans Med Imaging. 2014 Jan;33(1):1-10. doi: 10.1109/TMI.2013.2268898. Epub 2013 Jun 14.
8
Prospective motion correction in brain imaging: a review.
Magn Reson Med. 2013 Mar 1;69(3):621-36. doi: 10.1002/mrm.24314. Epub 2012 May 8.
9
A four-dimensional computed tomography analysis of multiorgan abdominal motion.
Int J Radiat Oncol Biol Phys. 2012 May 1;83(1):435-41. doi: 10.1016/j.ijrobp.2011.06.1970. Epub 2011 Dec 22.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验