Suppr超能文献

布氏锥虫和人类CYP51中的配体通道:寄生虫特异性药物设计的见解

Ligand tunnels in T. brucei and human CYP51: Insights for parasite-specific drug design.

作者信息

Yu Xiaofeng, Nandekar Prajwal, Mustafa Ghulam, Cojocaru Vlad, Lepesheva Galina I, Wade Rebecca C

机构信息

Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany.

Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany.

出版信息

Biochim Biophys Acta. 2016 Jan;1860(1 Pt A):67-78. doi: 10.1016/j.bbagen.2015.10.015. Epub 2015 Oct 19.

Abstract

BACKGROUND

Cytochrome P450 sterol 14α-demethylase (CYP51) is an essential enzyme for sterol biosynthesis and a target for anti-parasitic drug design. However, the design of parasite-specific drugs that inhibit parasitic CYP51 without severe side effects remains challenging. The active site of CYP51 is situated in the interior of the protein. Here, we characterize the potential ligand egress routes and mechanisms in Trypanosoma brucei and human CYP51 enzymes.

METHODS

We performed Random Acceleration Molecular Dynamics simulations of the egress of four different ligands from the active site of models of soluble and membrane-bound T. brucei CYP51 and of soluble human CYP51.

RESULTS

In the simulations, tunnel 2f, which leads to the membrane, was found to be the predominant ligand egress tunnel for all the ligands studied. Tunnels S, 1 and W, which lead to the cytosol, were also used in T. brucei CYP51, whereas tunnel 1 was the only other tunnel used significantly in human CYP51. The common tunnels found previously in other CYPs were barely used. The ligand egress times were shorter for human than T. brucei CYP51, suggesting lower barriers to ligand passage. Two gating residues, F105 and M460, in T. brucei CYP51 that modulate the opening of tunnels 2f and S were identified.

CONCLUSIONS

Although the main egress tunnel was the same, differences in the tunnel-lining residues, ligand passage and tunnel usage were found between T. brucei and human CYP51s.

GENERAL SIGNIFICANCE

The results provide a basis for the design of selective anti-parasitic agents targeting the ligand tunnels.

摘要

背景

细胞色素P450固醇14α-去甲基酶(CYP51)是固醇生物合成的关键酶,也是抗寄生虫药物设计的靶点。然而,设计能抑制寄生虫CYP51且无严重副作用的特异性药物仍具有挑战性。CYP51的活性位点位于蛋白质内部。在此,我们对布氏锥虫和人CYP51酶中潜在的配体排出途径及机制进行了表征。

方法

我们对可溶性和膜结合型布氏锥虫CYP51模型以及可溶性人CYP51模型活性位点中四种不同配体的排出进行了随机加速分子动力学模拟。

结果

在模拟中,通向细胞膜的2f通道被发现是所有研究配体的主要配体排出通道。通向胞质溶胶的S通道、1通道和W通道在布氏锥虫CYP51中也被使用,而1通道是在人CYP51中显著使用的唯一其他通道。先前在其他细胞色素P450中发现的常见通道几乎未被使用。人CYP51的配体排出时间比布氏锥虫CYP51短,表明配体通过的障碍更低。在布氏锥虫CYP51中鉴定出两个调节2f通道和S通道开放的门控残基F105和M460。

结论

尽管主要排出通道相同,但布氏锥虫和人CYP51在通道内衬残基、配体通过和通道使用方面存在差异。

普遍意义

这些结果为设计靶向配体通道的选择性抗寄生虫药物提供了依据。

相似文献

1
Ligand tunnels in T. brucei and human CYP51: Insights for parasite-specific drug design.
Biochim Biophys Acta. 2016 Jan;1860(1 Pt A):67-78. doi: 10.1016/j.bbagen.2015.10.015. Epub 2015 Oct 19.
2
Dynamics of CYP51: implications for function and inhibitor design.
J Mol Recognit. 2015 Feb;28(2):59-73. doi: 10.1002/jmr.2412. Epub 2015 Jan 20.
3
Structural complex of sterol 14α-demethylase (CYP51) with 14α-methylenecyclopropyl-Delta7-24, 25-dihydrolanosterol.
J Lipid Res. 2012 Feb;53(2):311-20. doi: 10.1194/jlr.M021865. Epub 2011 Nov 30.
6
Trypanosoma brucei CYP51: Essentiality and Targeting Therapy in an Experimental Model.
PLoS Negl Trop Dis. 2016 Nov 17;10(11):e0005125. doi: 10.1371/journal.pntd.0005125. eCollection 2016 Nov.
7
CYP51 from Trypanosoma brucei is obtusifoliol-specific.
Biochemistry. 2004 Aug 24;43(33):10789-99. doi: 10.1021/bi048967t.
9
Binding of a physiological substrate causes large-scale conformational reorganization in cytochrome P450 51.
J Biol Chem. 2018 Dec 14;293(50):19344-19353. doi: 10.1074/jbc.RA118.005850. Epub 2018 Oct 16.
10
Crystal structures of Trypanosoma brucei sterol 14alpha-demethylase and implications for selective treatment of human infections.
J Biol Chem. 2010 Jan 15;285(3):1773-80. doi: 10.1074/jbc.M109.067470. Epub 2009 Nov 18.

引用本文的文献

2
Identification of Potent and Selective Inhibitors of : Structural Insights into Sterol 14α-Demethylase as a Key Drug Target.
J Med Chem. 2024 May 9;67(9):7443-7457. doi: 10.1021/acs.jmedchem.4c00303. Epub 2024 Apr 29.
3
Mechanistic Understanding from Molecular Dynamics in Pharmaceutical Research 2: Lipid Membrane in Drug Design.
Pharmaceuticals (Basel). 2021 Oct 19;14(10):1062. doi: 10.3390/ph14101062.
4
Tryptophan-75 Is a Low-Energy Channel-Gating Residue that Facilitates Substrate Egress/Access in Cytochrome P450 2D6.
Drug Metab Dispos. 2021 Mar;49(3):179-187. doi: 10.1124/dmd.120.000274. Epub 2020 Dec 29.
5
Molecular Dynamics Investigations of Binding Mechanism for Triazoles Inhibitors to CYP51.
Front Mol Biosci. 2020 Sep 25;7:586540. doi: 10.3389/fmolb.2020.586540. eCollection 2020.
8
Advances in preclinical approaches to Chagas disease drug discovery.
Expert Opin Drug Discov. 2019 Nov;14(11):1161-1174. doi: 10.1080/17460441.2019.1652593. Epub 2019 Aug 14.
9
Multiscale Simulations of Biological Membranes: The Challenge To Understand Biological Phenomena in a Living Substance.
Chem Rev. 2019 May 8;119(9):5607-5774. doi: 10.1021/acs.chemrev.8b00538. Epub 2019 Mar 12.

本文引用的文献

1
Substrate tunnels in enzymes: structure-function relationships and computational methodology.
Proteins. 2015 Apr;83(4):599-611. doi: 10.1002/prot.24772. Epub 2015 Feb 28.
2
Dynamics of CYP51: implications for function and inhibitor design.
J Mol Recognit. 2015 Feb;28(2):59-73. doi: 10.1002/jmr.2412. Epub 2015 Jan 20.
4
Including ligand-induced protein flexibility into protein tunnel prediction.
J Comput Chem. 2014 Sep 15;35(24):1748-56. doi: 10.1002/jcc.23680. Epub 2014 Jul 5.
5
Architecture of a single membrane spanning cytochrome P450 suggests constraints that orient the catalytic domain relative to a bilayer.
Proc Natl Acad Sci U S A. 2014 Mar 11;111(10):3865-70. doi: 10.1073/pnas.1324245111. Epub 2014 Feb 3.
6
Conformational diversity and ligand tunnels of mammalian cytochrome P450s.
Biotechnol Appl Biochem. 2013 Jan-Feb;60(1):134-45. doi: 10.1002/bab.1074.
8
VNI cures acute and chronic experimental Chagas disease.
J Infect Dis. 2013 Aug 1;208(3):504-11. doi: 10.1093/infdis/jit042. Epub 2013 Jan 31.
10
Investigation of indazole unbinding pathways in CYP2E1 by molecular dynamics simulations.
PLoS One. 2012;7(3):e33500. doi: 10.1371/journal.pone.0033500. Epub 2012 Mar 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验