Suppr超能文献

抗恰加斯病药物研发的临床前方法进展。

Advances in preclinical approaches to Chagas disease drug discovery.

机构信息

Department of Microbiology, Immunology and Physiology, School of Medicine, Meharry Medical College , Nashville , TN , USA.

出版信息

Expert Opin Drug Discov. 2019 Nov;14(11):1161-1174. doi: 10.1080/17460441.2019.1652593. Epub 2019 Aug 14.

Abstract

: Chagas disease affects 8-10 million people worldwide, mainly in Latin America. The current therapy for Chagas disease is limited to nifurtimox and benznidazole, which are effective in treating only the acute phase of the disease but with severe side effects. Therefore, there is an unmet need for new drugs and for the exploration of innovative approaches which may lead to the discovery of new effective and safe drugs for its treatment. : The authors report and discuss recent approaches including structure-based design that have led to the discovery of new promising small molecule candidates for Chagas disease which affect prime targets that intervene in the sterol pathway of . Other trypanosome targets, phenotypic screening, the use of artificial intelligence and the challenges with Chagas disease drug discovery are also discussed. : The application of recent scientific innovations to the field of Chagas disease have led to the discovery of new promising drug candidates for Chagas disease. Phenotypic screening brought new hits and opportunities for drug discovery. Artificial intelligence also has the potential to accelerate drug discovery in Chagas disease and further research into this is warranted.

摘要

: 全球有 800 万至 1000 万人感染恰加斯病,主要分布在拉丁美洲。目前恰加斯病的治疗方法仅限于硝呋替莫和苯并咪唑,它们仅对疾病的急性期有效,但副作用严重。因此,需要开发新的药物,并探索创新方法,以发现新的有效和安全的治疗药物。 : 作者报告并讨论了最近的一些方法,包括基于结构的设计,这些方法导致发现了新的有前途的小分子候选药物,这些药物针对参与 的甾醇途径的主要靶点。还讨论了其他锥虫靶标、表型筛选、人工智能的应用以及恰加斯病药物发现的挑战。 : 最近的科学创新在恰加斯病领域的应用为恰加斯病发现了新的有前途的候选药物。表型筛选带来了新的药物发现的发现和机会。人工智能也有可能加速恰加斯病的药物发现,进一步的研究是有必要的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/34dc/6779130/1048132868dd/nihms-1536632-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验