Suppr超能文献

自组装糖肽纳米纤维作为半乳糖凝集素-1生物活性的调节剂

Self-assembled glycopeptide nanofibers as modulators of galectin-1 bioactivity.

作者信息

Restuccia Antonietta, Tian Ye F, Collier Joel H, Hudalla Gregory A

机构信息

J. Crayton Pruitt Family Department of Biomedical Engineering.

Department of Surgery, University of Chicago. ; Department of Biomedical Engineering, Illinois Institute of Technology.

出版信息

Cell Mol Bioeng. 2015 Sep 1;8(3):471-487. doi: 10.1007/s12195-015-0399-2. Epub 2015 Jun 15.

Abstract

Galectins are carbohydrate-binding proteins that act as extracellular signaling molecules in various normal and pathological processes. Galectin bioactivity is mediated by specific non-covalent interactions with cell-surface and extracellular matrix (ECM) glycoproteins, which can enhance or inhibit signaling events that influence various cellular behaviors, including adhesion, proliferation, differentiation, and apoptosis. Here, we developed a materials approach to modulate galectin bioactivity by mimicking natural galectin-glycoprotein interactions. Specifically, we created a variant of a peptide that self-assembles into β-sheet nanofibers under aqueous conditions, QQKFQFQFEQQ (Q11), which has an asparagine residue modified with the monosaccharide N-acetylglucosamine (GlcNAc) at its N-terminus (GlcNAc-Q11). GlcNAc-Q11 self-assembled into β-sheet nanofibers under similar conditions as Q11. Nanofibrillar GlcNAc moieties were efficiently converted to the galectin-binding disaccharide N-acetyllactosamine (LacNAc) via the enzyme β-1,4-galactosyltransferase and the sugar donor UDP-galactose, while retaining β-sheet structure and nanofiber morphology. LacNAc-Q11 nanofibers bound galectin-1 and -3 in a LacNAc concentration-dependent manner, although nanofibers bound galectin-1 with higher affinity than galectin-3. In contrast, galectin-1 bound weakly to GlcNAc-Q11 nanofibers, while no galectin-3 binding to these nanofibers was observed. Galectin-1 binding to LacNAc-Q11 nanofibers was specific because it could be inhibited by excess soluble β-lactose, a galectin-binding carbohydrate. LacNAc-Q11 nanofibers inhibited galectin-1-mediated apoptosis of Jurkat T cells in a LacNAc concentration-dependent manner, but were unable to inhibit galectin-3 activity, consistent with galectin-binding affinity of the nanofibers. We envision that glycopeptide nanofibers capable of modulating galectin-1 bioactivity will be broadly useful as biomaterials for various medical applications, including cancer therapeutics, immunotherapy, tissue regeneration, and viral prophylaxis.

摘要

半乳糖凝集素是一类碳水化合物结合蛋白,在各种正常和病理过程中作为细胞外信号分子发挥作用。半乳糖凝集素的生物活性是通过与细胞表面和细胞外基质(ECM)糖蛋白的特定非共价相互作用介导的,这可以增强或抑制影响各种细胞行为的信号事件,包括粘附、增殖、分化和凋亡。在此,我们开发了一种材料方法,通过模拟天然半乳糖凝集素-糖蛋白相互作用来调节半乳糖凝集素的生物活性。具体而言,我们创建了一种肽变体,其在水性条件下自组装成β-折叠纳米纤维,即QQKFQFQFEQQ(Q11),其N端有一个用单糖N-乙酰葡糖胺(GlcNAc)修饰的天冬酰胺残基(GlcNAc-Q11)。GlcNAc-Q11在与Q11相似的条件下自组装成β-折叠纳米纤维。纳米纤维状的GlcNAc部分通过β-1,4-半乳糖基转移酶和糖供体UDP-半乳糖有效地转化为半乳糖凝集素结合二糖N-乙酰乳糖胺(LacNAc),同时保留β-折叠结构和纳米纤维形态。LacNAc-Q11纳米纤维以LacNAc浓度依赖的方式结合半乳糖凝集素-1和-3,尽管纳米纤维对半乳糖凝集素-1的亲和力高于半乳糖凝集素-3。相比之下,半乳糖凝集素-1与GlcNAc-Q11纳米纤维的结合较弱,而未观察到半乳糖凝集素-3与这些纳米纤维的结合。半乳糖凝集素-1与LacNAc-Q11纳米纤维的结合是特异性的,因为它可以被过量的可溶性β-乳糖(一种半乳糖凝集素结合碳水化合物)抑制。LacNAc-Q11纳米纤维以LacNAc浓度依赖的方式抑制半乳糖凝集素-1介导的Jurkat T细胞凋亡,但无法抑制半乳糖凝集素-3的活性,这与纳米纤维的半乳糖凝集素结合亲和力一致。我们设想,能够调节半乳糖凝集素-1生物活性的糖肽纳米纤维将作为生物材料广泛应用于各种医学领域,包括癌症治疗、免疫治疗、组织再生和病毒预防。

相似文献

1
Self-assembled glycopeptide nanofibers as modulators of galectin-1 bioactivity.
Cell Mol Bioeng. 2015 Sep 1;8(3):471-487. doi: 10.1007/s12195-015-0399-2. Epub 2015 Jun 15.
5
Selectively Deoxyfluorinated N-Acetyllactosamine Analogues as F NMR Probes to Study Carbohydrate-Galectin Interactions.
Chemistry. 2021 Sep 9;27(51):13040-13051. doi: 10.1002/chem.202101752. Epub 2021 Aug 4.
7
Glycosylation of a Nonfibrillizing Appendage Alters the Self-Assembly Pathway of a Synthetic β-Sheet Fibrillizing Peptide.
J Phys Chem B. 2021 Jun 24;125(24):6559-6571. doi: 10.1021/acs.jpcb.1c02083. Epub 2021 Jun 15.
8
High-Affinity -(2-Hydroxypropyl)methacrylamide Copolymers with Tailored -Acetyllactosamine Presentation Discriminate between Galectins.
Biomacromolecules. 2020 Feb 10;21(2):641-652. doi: 10.1021/acs.biomac.9b01370. Epub 2020 Jan 23.
10
Parallel β-Sheet Structure and Structural Heterogeneity Detected within Q11 Self-Assembling Peptide Nanofibers.
J Phys Chem B. 2024 Jun 6;128(22):5387-5396. doi: 10.1021/acs.jpcb.4c00825. Epub 2024 May 24.

引用本文的文献

1
Parallel β-Sheet Structure and Structural Heterogeneity Detected within Q11 Self-Assembling Peptide Nanofibers.
J Phys Chem B. 2024 Jun 6;128(22):5387-5396. doi: 10.1021/acs.jpcb.4c00825. Epub 2024 May 24.
2
Side-Chain Chemistry Governs Hierarchical Order of Charge-Complementary β-sheet Peptide Coassemblies.
Angew Chem Int Ed Engl. 2023 Dec 18;62(51):e202314531. doi: 10.1002/anie.202314531. Epub 2023 Nov 20.
4
Glycopeptide-Based Supramolecular Hydrogels Induce Differentiation of Adipose Stem Cells into Neural Lineages.
ACS Appl Mater Interfaces. 2023 Jun 28;15(25):29998-30007. doi: 10.1021/acsami.3c05309. Epub 2023 Jun 16.
5
Conserved Protein-Polymer Interactions across Structurally Diverse Polymers Underlie Alterations to Protein Thermal Unfolding.
ACS Cent Sci. 2023 Mar 14;9(4):685-695. doi: 10.1021/acscentsci.2c01522. eCollection 2023 Apr 26.
6
Charge guides pathway selection in β-sheet fibrillizing peptide co-assembly.
Commun Chem. 2020 Nov 13;3(1):172. doi: 10.1038/s42004-020-00414-w.
7
Atomic-Scale View of Protein-PEG Interactions that Redirect the Thermal Unfolding Pathway of PEGylated Human Galectin-3.
Angew Chem Int Ed Engl. 2022 Oct 4;61(40):e202203784. doi: 10.1002/anie.202203784. Epub 2022 Aug 25.
8
The Crossroads of Glycoscience, Infection, and Immunology.
Front Microbiol. 2021 Sep 27;12:731008. doi: 10.3389/fmicb.2021.731008. eCollection 2021.
9
Glycosylation of a Nonfibrillizing Appendage Alters the Self-Assembly Pathway of a Synthetic β-Sheet Fibrillizing Peptide.
J Phys Chem B. 2021 Jun 24;125(24):6559-6571. doi: 10.1021/acs.jpcb.1c02083. Epub 2021 Jun 15.
10
Physical tuning of galectin-3 signaling.
Proc Natl Acad Sci U S A. 2021 May 11;118(19). doi: 10.1073/pnas.2024117118.

本文引用的文献

1
Glycans as biofunctional ligands for gold nanorods: stability and targeting in protein-rich media.
J Am Chem Soc. 2015 Mar 18;137(10):3686-92. doi: 10.1021/jacs.5b01001. Epub 2015 Mar 4.
2
Microbe-Host Interactions are Positively and Negatively Regulated by Galectin-Glycan Interactions.
Front Immunol. 2014 Jun 18;5:284. doi: 10.3389/fimmu.2014.00284. eCollection 2014.
3
Extracellular galectin-3 in tumor progression and metastasis.
Front Oncol. 2014 Jun 16;4:138. doi: 10.3389/fonc.2014.00138. eCollection 2014.
4
Gradated assembly of multiple proteins into supramolecular nanomaterials.
Nat Mater. 2014 Aug;13(8):829-36. doi: 10.1038/nmat3998. Epub 2014 Jun 15.
5
Galectin-1 and -9 in angiogenesis: a sweet couple.
Glycobiology. 2014 Oct;24(10):915-20. doi: 10.1093/glycob/cwu048. Epub 2014 May 26.
7
Control of angiogenesis by galectins involves the release of platelet-derived proangiogenic factors.
PLoS One. 2014 Apr 30;9(4):e96402. doi: 10.1371/journal.pone.0096402. eCollection 2014.
9
The use of self-adjuvanting nanofiber vaccines to elicit high-affinity B cell responses to peptide antigens without inflammation.
Biomaterials. 2013 Nov;34(34):8776-85. doi: 10.1016/j.biomaterials.2013.07.063. Epub 2013 Aug 13.
10
Galectin-9 in tumor biology: a jack of multiple trades.
Biochim Biophys Acta. 2013 Aug;1836(1):177-85. doi: 10.1016/j.bbcan.2013.04.006. Epub 2013 May 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验