Department of Chemistry, University of Florida, Gainesville, FL 32611, USA.
Angew Chem Int Ed Engl. 2022 Oct 4;61(40):e202203784. doi: 10.1002/anie.202203784. Epub 2022 Aug 25.
PEGylation is a promising approach to address the central challenge of applying biologics, i.e., lack of protein stability in the demanding environment of the human body. Wider application is hindered by lack of atomic level understanding of protein-PEG interactions, preventing design of conjugates with predicted properties. We deployed an integrative structural and biophysical approach to address this critical challenge with the PEGylated carbohydrate recognition domain of human galectin-3 (Gal3C), a lectin essential for cell adhesion and potential biologic. PEGylation dramatically increased Gal3C thermal stability, forming a stable intermediate and redirecting its unfolding pathway. Structural details revealed by NMR pointed to a potential role of PEG localization facilitated by charged residues. Replacing these residues subtly altered the protein-PEG interface and thermal unfolding behavior, providing insight into rationally designing conjugates while preserving PEGylation benefits.
聚乙二醇化是解决应用生物制剂的核心挑战的一种很有前途的方法,即生物制剂在人体苛刻环境中缺乏蛋白质稳定性。由于缺乏对蛋白质-聚乙二醇相互作用的原子水平理解,阻碍了具有预测性能的缀合物的设计,因此广泛应用受到阻碍。我们采用了一种综合的结构和生物物理方法来解决这个关键挑战,研究对象是人类半乳糖凝集素-3(Gal3C)的聚乙二醇化碳水化合物识别结构域,Gal3C 是一种对于细胞黏附至关重要的凝集素,也是一种潜在的生物制剂。聚乙二醇化极大地提高了 Gal3C 的热稳定性,形成了一个稳定的中间体,并改变了其展开途径。通过 NMR 揭示的结构细节表明,PEG 的定位可能得益于带电残基的促进。这些残基的替换巧妙地改变了蛋白质-聚乙二醇界面和热展开行为,为合理设计缀合物提供了思路,同时保留了聚乙二醇化的益处。