Suppr超能文献

放射性药物中无机纳米粒子应用的设计与药代动力学方面

Design and pharmacokinetical aspects for the use of inorganic nanoparticles in radiomedicine.

作者信息

Puntes Victor

机构信息

1 Institut Català de Recerca i Estudis Avançats, Barcelona, Spain.

2 Insitut Català de Nanociència i Nanotecnologia, Campus UAB, Barcelona, Spain.

出版信息

Br J Radiol. 2016;89(1057):20150210. doi: 10.1259/bjr.20150210. Epub 2015 Oct 23.

Abstract

The potential use of nanoparticles (NPs) in medicine is determined by the pharmacokinetical and biodistribution aspects that govern NP behaviour. In this context, diagnosis (low irradiation dose) and therapy (high irradiation dose) is about the same for the NP, as much as to deliver toxic doses of radiation or toxic doses of a chemotherapeutic agent. The NP effects also have to be correlated with how they interact, evolve and are transformed during their exposure to the human body, during their administration, distribution, metabolization and expulsion. Indeed, owing to interactions between NPs and components from the biological medium, NPs are known to suffer different types of alterations, such as loss of colloidal stability (aggregation and sedimentation), protein adsorption (and consequent exposure to or escape from the immune system) and chemical transformation (oxidation, corrosion and dissolution). Their original performance and these alterations have a major impact on NP behaviour and have to be taken into account for any intended use of them in medicine, also including their use for enhanced radiodiagnosis, radiotherapy and radiochemotherapy.

摘要

纳米颗粒(NPs)在医学中的潜在应用取决于支配NP行为的药代动力学和生物分布方面。在这种情况下,对于NP来说,诊断(低辐射剂量)和治疗(高辐射剂量)是相似的,就如同输送有毒剂量的辐射或有毒剂量的化疗药物一样。NP的效应还必须与它们在接触人体过程中、给药、分布、代谢和排出过程中的相互作用、演变和转化方式相关联。实际上,由于NP与生物介质中的成分之间的相互作用,已知NP会发生不同类型的改变,例如胶体稳定性丧失(聚集和沉淀)、蛋白质吸附(以及随之而来的暴露于免疫系统或逃避免疫系统)和化学转化(氧化、腐蚀和溶解)。它们的原始性能以及这些改变对NP行为有重大影响,并且在将它们用于医学的任何预期用途时,包括用于增强放射诊断、放射治疗和放射化学治疗时,都必须予以考虑。

相似文献

1
Design and pharmacokinetical aspects for the use of inorganic nanoparticles in radiomedicine.
Br J Radiol. 2016;89(1057):20150210. doi: 10.1259/bjr.20150210. Epub 2015 Oct 23.
2
Surface engineering of inorganic nanoparticles for imaging and therapy.
Adv Drug Deliv Rev. 2013 May;65(5):622-48. doi: 10.1016/j.addr.2012.08.015. Epub 2012 Sep 6.
3
Inorganic nanoparticle biomolecular corona: formation, evolution and biological impact.
Nanomedicine (Lond). 2012 Dec;7(12):1917-30. doi: 10.2217/nnm.12.169.
4
Poly(lactide)-vitamin E derivative/montmorillonite nanoparticle formulations for the oral delivery of Docetaxel.
Biomaterials. 2009 Jul;30(19):3297-306. doi: 10.1016/j.biomaterials.2009.02.045. Epub 2009 Mar 19.
7
Formulation of functionalized PLGA-PEG nanoparticles for in vivo targeted drug delivery.
Biomaterials. 2007 Feb;28(5):869-76. doi: 10.1016/j.biomaterials.2006.09.047. Epub 2006 Oct 20.
8
Cellular cytotoxicity and in-vivo biodistribution of docetaxel poly(lactide-co-glycolide) nanoparticles.
Anticancer Drugs. 2010 Jan;21(1):43-52. doi: 10.1097/CAD.0b013e328331f934.

引用本文的文献

本文引用的文献

1
Nanosafety research--are we on the right track?
Angew Chem Int Ed Engl. 2014 Nov 10;53(46):12304-19. doi: 10.1002/anie.201403367. Epub 2014 Oct 10.
2
Radiation dose enhancement of gadolinium-based AGuIX nanoparticles on HeLa cells.
Nanomedicine. 2014 Nov;10(8):1751-5. doi: 10.1016/j.nano.2014.06.004. Epub 2014 Jun 15.
3
Programmed iron oxide nanoparticles disintegration in anaerobic digesters boosts biogas production.
Small. 2014 Jul 23;10(14):2801-8, 2741. doi: 10.1002/smll.201303703. Epub 2014 Apr 1.
5
Stimuli-responsive nanocarriers for drug delivery.
Nat Mater. 2013 Nov;12(11):991-1003. doi: 10.1038/nmat3776.
6
Nanomedicine for multimodality treatment of cancer.
Nanomedicine (Lond). 2012 Dec;7(12):1791-4. doi: 10.2217/nnm.12.159.
7
Detoxifying antitumoral drugs via nanoconjugation: the case of gold nanoparticles and cisplatin.
PLoS One. 2012;7(10):e47562. doi: 10.1371/journal.pone.0047562. Epub 2012 Oct 17.
8
Nanoscale radiotherapy with hafnium oxide nanoparticles.
Future Oncol. 2012 Sep;8(9):1167-81. doi: 10.2217/fon.12.96.
10
Physical basis and biological mechanisms of gold nanoparticle radiosensitization.
Nanoscale. 2012 Aug 21;4(16):4830-8. doi: 10.1039/c2nr31227a. Epub 2012 Jul 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验