Suppr超能文献

无机纳米粒子的表面工程用于成像和治疗。

Surface engineering of inorganic nanoparticles for imaging and therapy.

机构信息

Department of Chemistry, Pohang University of Science and Technology (POSTECH), San 31, Hyojadong, Namgu, Pohang 790-784, South Korea.

出版信息

Adv Drug Deliv Rev. 2013 May;65(5):622-48. doi: 10.1016/j.addr.2012.08.015. Epub 2012 Sep 6.

Abstract

Many kinds of inorganic nanoparticles (NPs) including semiconductor, metal, metal oxide, and lanthanide-doped NPs have been developed for imaging and therapy applications. Their unique optical, magnetic, and electronic properties can be tailored by controlling the composition, size, shape, and structure. Interaction of such NPs with cells and/or in vivo compartments is critically determined by the surface properties, and sophisticated control over the NP surface is essential to control their fate in biological environments. We review NP surface coating strategies using the categories of small surface ligand, polymer, and lipid. Use of small ligand molecules has the advantage of maintaining the minimal hydrodynamic (HD) size. Polymers can be advantageous in NP anchoring by combining multiple affinity groups. Encapsulation of NPs in polymers, lipids or surfactants can preserve the as-synthesized NPs. NP surface properties and reaction conditions should be carefully considered to obtain a bioconjugate that maintains the physicochemical properties of NP and functionalities of the conjugated biomolecules. We highlight how the surface properties of NPs impact their interactions with cells and in vivo compartments, especially focused on the important surface design parameters such as HD size, surface charge, and targeting. Typically, maximal cellular uptake can take place in the intermediate NP size range of 40-60nm. Clearance of NPs from blood circulation is largely dependent on the degree of uptake by reticuloendothelial system when they are larger than 10nm. When the HD size is below 10nm, NPs show broad distribution over many organs. Reduction of HD size below the limit of renal barrier can achieve fast clearance of NPs. For maximal tumor accumulation, NPs should have long blood circulation time and should be large enough to prevent rapid penetration. NPs are also desired to rapidly clear out from the body after the mission before they cause toxic side effects. However, efficient clearance from the body to avoid side effects may result in the reduction in residence time required for accumulation in target tissues. Smart design of NP surface coating that can meet the conflicting demands can open a new avenue of NP applications. Surface charge and hydrophobicity need to be carefully considered for NP surface design. Positively charged NPs more adsorb on cell membranes and consequently show higher level of internalizations when compared with negatively charged or neutral NPs. NPs encounter a large variety of biomolecules in vivo, where non-specific adsorptions can potentially alter the physicochemical properties of the NPs. For optimal performance, NPs are suggested to have neutral surface charge at physiological conditions, small HD size, and minimal non-specific adsorption levels. Zwitterionic NP surface coating by small surface ligands can be a promising approach. Toxicity is one of most critical issues, where proper control of the NP surface can significantly reduce the toxicities.

摘要

许多种类的无机纳米粒子(NPs),包括半导体、金属、金属氧化物和镧系掺杂 NPs,已被开发用于成像和治疗应用。通过控制组成、尺寸、形状和结构,可以调整它们独特的光学、磁性和电子特性。这些 NPs 与细胞和/或体内隔室的相互作用由表面性质决定,对 NP 表面进行复杂的控制对于控制它们在生物环境中的命运至关重要。我们综述了使用小表面配体、聚合物和脂质的 NP 表面涂层策略。使用小分子配体的优点是保持最小的水动力(HD)尺寸。聚合物可以通过结合多个亲和基团来有利于 NP 的固定。将 NPs 封装在聚合物、脂质或表面活性剂中可以保持合成的 NPs。NP 表面性质和反应条件应仔细考虑,以获得保持 NP 的物理化学性质和共轭生物分子的功能的生物缀合物。我们强调了 NP 表面性质如何影响它们与细胞和体内隔室的相互作用,特别是集中在 HD 尺寸、表面电荷和靶向等重要表面设计参数上。通常,在 40-60nm 的中间 NP 尺寸范围内可以发生最大的细胞摄取。当它们大于 10nm 时,NP 从血液循环中的清除主要依赖于网状内皮系统的摄取程度。当 HD 尺寸小于 10nm 时,NP 会在许多器官中广泛分布。将 HD 尺寸降低到肾脏屏障的极限以下可以实现 NP 的快速清除。为了实现最大的肿瘤积累,NP 应该具有长的血液循环时间,并且应该足够大以防止快速穿透。NP 也希望在完成任务后从体内迅速清除,以免产生毒性副作用。然而,为了避免副作用而从体内高效清除可能会导致在目标组织中积累所需的时间减少。能够满足相互冲突的需求的 NP 表面涂层的智能设计可以开辟 NP 应用的新途径。对于 NP 表面设计,需要仔细考虑表面电荷和疏水性。与带负电荷或中性的 NPs 相比,带正电荷的 NPs 更能吸附在细胞膜上,因此内部化水平更高。NP 在体内遇到大量的生物分子,其中非特异性吸附可能会潜在地改变 NPs 的物理化学性质。为了获得最佳性能,建议在生理条件下 NP 具有中性表面电荷、小的 HD 尺寸和最小的非特异性吸附水平。通过小表面配体进行两性离子 NP 表面涂层可能是一种很有前途的方法。毒性是最关键的问题之一,对 NP 表面的适当控制可以显著降低毒性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验