Suppr超能文献

利用环境预测性状进行适应性的全基因组关联分析。

Genome-Wide Association Analysis of Adaptation Using Environmentally Predicted Traits.

作者信息

van Heerwaarden Joost, van Zanten Martijn, Kruijer Willem

机构信息

Biometris, Wageningen University, Wageningen, The Netherlands; Plant Production Systems, Wageningen University, Wageningen, The Netherlands.

Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands.

出版信息

PLoS Genet. 2015 Oct 23;11(10):e1005594. doi: 10.1371/journal.pgen.1005594. eCollection 2015 Oct.

Abstract

Current methods for studying the genetic basis of adaptation evaluate genetic associations with ecologically relevant traits or single environmental variables, under the implicit assumption that natural selection imposes correlations between phenotypes, environments and genotypes. In practice, observed trait and environmental data are manifestations of unknown selective forces and are only indirectly associated with adaptive genetic variation. In theory, improved estimation of these forces could enable more powerful detection of loci under selection. Here we present an approach in which we approximate adaptive variation by modeling phenotypes as a function of the environment and using the predicted trait in multivariate and univariate genome-wide association analysis (GWAS). Based on computer simulations and published flowering time data from the model plant Arabidopsis thaliana, we find that environmentally predicted traits lead to higher recovery of functional loci in multivariate GWAS and are more strongly correlated to allele frequencies at adaptive loci than individual environmental variables. Our results provide an example of the use of environmental data to obtain independent and meaningful information on adaptive genetic variation.

摘要

目前用于研究适应性遗传基础的方法,是在自然选择使表型、环境和基因型之间产生相关性这一隐含假设下,评估与生态相关性状或单一环境变量的遗传关联。在实际中,观察到的性状和环境数据是未知选择力的表现,仅与适应性遗传变异间接相关。理论上,对这些选择力的更精确估计能够更有力地检测出处于选择中的基因座。在此,我们提出一种方法,即通过将表型建模为环境的函数,并在多变量和单变量全基因组关联分析(GWAS)中使用预测性状来近似适应性变异。基于计算机模拟以及模式植物拟南芥已发表的开花时间数据,我们发现环境预测性状在多变量GWAS中能使功能基因座的恢复率更高,并且与适应性基因座的等位基因频率的相关性比单个环境变量更强。我们的结果提供了一个利用环境数据获取关于适应性遗传变异的独立且有意义信息的实例。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a9e/4619680/15a9c453b768/pgen.1005594.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验