Qu Yuangao, Engdahl Anders, Zhu Shixing, Vajda Vivi, McLoughlin Nicola
1 Department of Earth Science and Centre for Geobiology, University of Bergen , Norway .
2 MAX IV Laboratory, Lund University , Sweden .
Astrobiology. 2015 Oct;15(10):825-42. doi: 10.1089/ast.2015.1298.
Opaline silica deposits on Mars may be good target sites where organic biosignatures could be preserved. Potential analogues on Earth are provided by ancient cherts containing carbonaceous material (CM) permineralized by silica. In this study, we investigated the ultrastructure and chemical characteristics of CM in the Rhynie chert (c. 410 Ma, UK), Bitter Springs Formation (c. 820 Ma, Australia), and Wumishan Formation (c. 1485 Ma, China). Raman spectroscopy indicates that the CM has experienced advanced diagenesis or low-grade metamorphism at peak metamorphic temperatures of 150-350°C. Raman mapping and micro-Fourier transform infrared (micro-FTIR) spectroscopy were used to document subcellular-scale variation in the CM of fossilized plants, fungi, prokaryotes, and carbonaceous stromatolites. In the Rhynie chert, ultrastructural variation in the CM was found within individual fossils, while in coccoidal and filamentous microfossils of the Bitter Springs and formless CM of the Wumishan stromatolites ultrastructural variation was found between, not within, different microfossils. This heterogeneity cannot be explained by secondary geological processes but supports diverse carbonaceous precursors that experienced differential graphitization. Micro-FTIR analysis found that CM with lower structural order contains more straight carbon chains (has a lower R3/2 branching index) and that the structural order of eukaryotic CM is more heterogeneous than prokaryotic CM. This study demonstrates how Raman spectroscopy combined with micro-FTIR can be used to investigate the origin and preservation of silica-permineralized organics. This approach has good capability for furthering our understanding of CM preserved in Precambrian cherts, and potential biosignatures in siliceous deposits on Mars.
火星上的蛋白石二氧化硅沉积物可能是保存有机生物特征的良好目标地点。地球上的潜在类似物是由含有被二氧化硅完全矿化的碳质物质(CM)的古老燧石提供的。在这项研究中,我们调查了英国莱尼燧石(约4.1亿年前)、澳大利亚苦泉组(约8.2亿年前)和中国雾迷山组(约14.85亿年前)中CM的超微结构和化学特征。拉曼光谱表明,CM在150 - 350°C的峰值变质温度下经历了高级成岩作用或低级变质作用。拉曼映射和微傅里叶变换红外(micro - FTIR)光谱被用于记录化石植物、真菌、原核生物和碳质叠层石中CM的亚细胞尺度变化。在莱尼燧石中,在单个化石内部发现了CM的超微结构变化,而在苦泉组的球状和丝状微化石以及雾迷山叠层石的无定形CM中,超微结构变化是在不同微化石之间而非内部发现的。这种异质性不能用次生地质过程来解释,而是支持了经历了不同石墨化作用的多种含碳前驱体。微傅里叶变换红外分析发现,结构有序度较低的CM含有更多直碳链(具有较低的R3/2支化指数),并且真核生物CM的结构有序度比原核生物CM更具异质性。这项研究展示了拉曼光谱与微傅里叶变换红外光谱相结合如何用于研究二氧化硅完全矿化有机物的起源和保存。这种方法对于增进我们对保存在前寒武纪燧石中的CM以及火星硅质沉积物中潜在生物特征的理解具有良好的能力。
Nat Commun. 2023-3-13
J Geophys Res Planets. 2018-5
Philos Trans R Soc Lond B Biol Sci. 2018-2-5