Suppr超能文献

随机分形几何中几何控制的反常扩散:超越无限簇的研究

Geometry controlled anomalous diffusion in random fractal geometries: looking beyond the infinite cluster.

作者信息

Mardoukhi Yousof, Jeon Jae-Hyung, Metzler Ralf

机构信息

Institute of Physics and Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany.

出版信息

Phys Chem Chem Phys. 2015 Nov 28;17(44):30134-47. doi: 10.1039/c5cp03548a. Epub 2015 Oct 27.

Abstract

We investigate the ergodic properties of a random walker performing (anomalous) diffusion on a random fractal geometry. Extensive Monte Carlo simulations of the motion of tracer particles on an ensemble of realisations of percolation clusters are performed for a wide range of percolation densities. Single trajectories of the tracer motion are analysed to quantify the time averaged mean squared displacement (MSD) and to compare this with the ensemble averaged MSD of the particle motion. Other complementary physical observables associated with ergodicity are studied, as well. It turns out that the time averaged MSD of individual realisations exhibits non-vanishing fluctuations even in the limit of very long observation times as the percolation density approaches the critical value. This apparent non-ergodic behaviour concurs with the ergodic behaviour on the ensemble averaged level. We demonstrate how the non-vanishing fluctuations in single particle trajectories are analytically expressed in terms of the fractal dimension and the cluster size distribution of the random geometry, thus being of purely geometrical origin. Moreover, we reveal that the convergence scaling law to ergodicity, which is known to be inversely proportional to the observation time T for ergodic diffusion processes, follows a power-law ∼T(-h) with h < 1 due to the fractal structure of the accessible space. These results provide useful measures for differentiating the subdiffusion on random fractals from an otherwise closely related process, namely, fractional Brownian motion. Implications of our results on the analysis of single particle tracking experiments are provided.

摘要

我们研究了在随机分形几何结构上进行(反常)扩散的随机游走者的遍历性质。针对广泛的渗流密度范围,对示踪粒子在渗流团簇实现集合上的运动进行了大量蒙特卡罗模拟。分析了示踪粒子运动的单个轨迹,以量化时间平均均方位移(MSD),并将其与粒子运动的系综平均MSD进行比较。还研究了与遍历性相关的其他互补物理可观测量。结果表明,即使在渗流密度接近临界值时,观察时间非常长的极限情况下,单个实现的时间平均MSD仍表现出非零波动。这种明显的非遍历行为与系综平均水平上的遍历行为一致。我们展示了如何根据分形维数和随机几何结构的团簇大小分布来解析单个粒子轨迹中的非零波动,因此这些波动纯粹源于几何结构。此外,我们揭示了遍历性的收敛标度律,已知对于遍历扩散过程,该标度律与观察时间T成反比,由于可及空间的分形结构,其遵循幂律~T(-h),其中h < 1。这些结果为区分随机分形上的亚扩散与另一个密切相关的过程——分数布朗运动提供了有用的度量。我们的结果对单粒子跟踪实验分析的影响也进行了阐述。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验