Department of Physics, Bar Ilan University, Ramat-Gan 52900, Israel.
Phys Chem Chem Phys. 2011 Feb 7;13(5):1800-12. doi: 10.1039/c0cp01879a. Epub 2011 Jan 4.
Anomalous diffusion has been widely observed by single particle tracking microscopy in complex systems such as biological cells. The resulting time series are usually evaluated in terms of time averages. Often anomalous diffusion is connected with non-ergodic behaviour. In such cases the time averages remain random variables and hence irreproducible. Here we present a detailed analysis of the time averaged mean squared displacement for systems governed by anomalous diffusion, considering both unconfined and restricted (corralled) motion. We discuss the behaviour of the time averaged mean squared displacement for two prominent stochastic processes, namely, continuous time random walks and fractional Brownian motion. We also study the distribution of the time averaged mean squared displacement around its ensemble mean, and show that this distribution preserves typical process characteristics even for short time series. Recently, velocity correlation functions were suggested to distinguish between these processes. We here present analytical expressions for the velocity correlation functions. The knowledge of the results presented here is expected to be relevant for the correct interpretation of single particle trajectory data in complex systems.
在生物细胞等复杂系统中,通过单粒子跟踪显微镜广泛观察到异常扩散。所得时间序列通常根据时间平均值进行评估。异常扩散通常与非遍历行为有关。在这种情况下,时间平均值仍然是随机变量,因此是不可重复的。在这里,我们针对受异常扩散控制的系统,详细分析了时间平均均方位移,同时考虑了无约束和受限(约束)运动。我们讨论了两种突出的随机过程,即连续时间随机行走和分数布朗运动的时间平均均方位移的行为。我们还研究了时间平均均方位移围绕其整体平均值的分布,并表明,即使对于短时间序列,该分布也能保留典型的过程特征。最近,速度相关函数被建议用于区分这些过程。我们在这里给出了速度相关函数的解析表达式。预计这里提出的结果的知识对于正确解释复杂系统中的单个粒子轨迹数据是相关的。
Phys Chem Chem Phys. 2011-1-4
Phys Rev Lett. 2011-1-25
Phys Chem Chem Phys. 2015-11-28
Phys Rev E Stat Nonlin Soft Matter Phys. 2012-2
Phys Rev E Stat Nonlin Soft Matter Phys. 2010-2
Phys Rev E Stat Nonlin Soft Matter Phys. 2010-1
Phys Rev Lett. 2014-10-31
Entropy (Basel). 2025-7-28
Proc Natl Acad Sci U S A. 2024-10-8
Integr Org Biol. 2024-6-19
Commun Chem. 2024-2-7