Li Yang, Hasenhuetl Peter S, Schicker Klaus, Sitte Harald H, Freissmuth Michael, Sandtner Walter
From the Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, Waehringerstrasse 13a, A-1090 Vienna, Austria.
From the Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, Waehringerstrasse 13a, A-1090 Vienna, Austria
J Biol Chem. 2015 Dec 25;290(52):31069-76. doi: 10.1074/jbc.M115.688275. Epub 2015 Oct 26.
The dopamine transporter shapes dopaminergic neurotransmission by clearing extracellular dopamine and by replenishing vesicular stores. The dopamine transporter carries an endogenous binding site for Zn(2+), but the nature of the Zn(2+)-dependent modulation has remained elusive: both, inhibition and stimulation of DAT have been reported. Here, we exploited the high time resolution of patch-clamp recordings to examine the effects of Zn(2+) on the transport cycle of DAT: we recorded peak currents associated with substrate translocation and steady-state currents reflecting the forward transport mode of DAT. Zn(2+) depressed the peak current but enhanced the steady-state current through DAT. The parsimonious explanation is preferential binding of Zn(2+) to the outward facing conformation of DAT, which allows for an allosteric activation of DAT, in both, the forward transport mode and substrate exchange mode. We directly confirmed that Zn(2+) dissociated more rapidly from the inward- than from the outward-facing state of DAT. Finally, we formulated a kinetic model for the action of Zn(2+) on DAT that emulated all current experimental observations and accounted for all previous (in part contradictory) findings. Importantly, the model predicts that the intracellular Na(+) concentration determines whether substrate uptake by DAT is stimulated or inhibited by Zn(2+). This prediction was directly verified. The mechanistic framework provided by the current model is of relevance for the rational design of allosteric activators of DAT. These are of interest for treating de novo loss-of-function mutations of DAT associated with neuropsychiatric disorders such as attention deficit hyperactivity disorder (ADHD).
多巴胺转运体通过清除细胞外多巴胺和补充囊泡储存来塑造多巴胺能神经传递。多巴胺转运体带有一个内源性锌离子(Zn(2+))结合位点,但锌离子依赖性调节的本质仍不清楚:既有报道称其抑制多巴胺转运体(DAT),也有报道称其刺激DAT。在这里,我们利用膜片钳记录的高时间分辨率来研究Zn(2+)对DAT转运循环的影响:我们记录了与底物转运相关的峰值电流以及反映DAT正向转运模式的稳态电流。Zn(2+)降低了峰值电流,但增强了通过DAT的稳态电流。最简单的解释是Zn(2+)优先结合到DAT向外的构象上,这在正向转运模式和底物交换模式下都能对DAT进行变构激活。我们直接证实了Zn(2+)从DAT向内的状态解离比从向外的状态更快。最后,我们建立了一个Zn(2+)对DAT作用的动力学模型,该模型模拟了所有当前的实验观察结果,并解释了所有先前(部分相互矛盾)的发现。重要的是,该模型预测细胞内钠离子(Na(+))浓度决定了DAT对底物的摄取是被Zn(2+)刺激还是抑制。这一预测得到了直接验证。当前模型提供的机制框架与DAT变构激活剂的合理设计相关。这些对于治疗与神经精神疾病如注意力缺陷多动障碍(ADHD)相关的DAT新生功能丧失突变具有重要意义。