Suppr超能文献

用于组织中骨骼检测的宽场拉曼成像

Wide-field Raman imaging for bone detection in tissue.

作者信息

Papour Asael, Kwak Jin Hee, Taylor Zach, Wu Benjamin, Stafsudd Oscar, Grundfest Warren

机构信息

Quantum Electronics Laboratory, Department of Electrical Engineering, University of California Los Angeles, Los Angeles, California 90095, USA.

Section of Orthodontics, School of Dentistry, University of California Los Angeles, Los Angeles, California 90095, USA.

出版信息

Biomed Opt Express. 2015 Sep 10;6(10):3892-7. doi: 10.1364/BOE.6.003892. eCollection 2015 Oct 1.

Abstract

Inappropriate bone growth in soft tissue can occur after trauma to a limb and can cause a disruption to the healing process. This is known as Heterotopic Ossification (HO) in which regions in the tissue start to mineralize and form microscopic bone-like structures. These structures continue to calcify and develop into large, non-functional bony masses that cause pain, limit limb movement, and expose the tissue to reoccurring infections; in the case of open wounds this can lead to amputation as a result of a failed wound. Both Magnetic Resonance Imaging (MRI) and X-ray imaging have poor sensitivity and specificity for the detection of HO, thus delaying therapy and leading to poor patient outcomes. We present a low-power, fast (1 frame per second) optical Raman imaging system with a large field of view (1 cm(2)) that can differentiate bone tissue from soft tissue without spectroscopy, this in contrast to conventional Raman microscopy systems. This capability may allow for the development of instrumentation which permits bedside diagnosis of HO.

摘要

肢体创伤后软组织中可能会出现不适当的骨生长,这会干扰愈合过程。这被称为异位骨化(HO),即组织中的区域开始矿化并形成微观的类骨结构。这些结构会持续钙化并发展成大的、无功能的骨块,导致疼痛、限制肢体活动,并使组织反复感染;在开放性伤口的情况下,这可能会因伤口愈合失败而导致截肢。磁共振成像(MRI)和X射线成像对HO的检测灵敏度和特异性都很差,从而延误治疗并导致患者预后不良。我们展示了一种低功率、快速(每秒1帧)的光学拉曼成像系统,其视野较大(1平方厘米),无需光谱分析就能区分骨组织和软组织,这与传统拉曼显微镜系统不同。这种能力可能有助于开发能够在床边诊断HO的仪器。

相似文献

1
Wide-field Raman imaging for bone detection in tissue.
Biomed Opt Express. 2015 Sep 10;6(10):3892-7. doi: 10.1364/BOE.6.003892. eCollection 2015 Oct 1.
2
3
Raman spectroscopic analysis of combat-related heterotopic ossification development.
Bone. 2013 Dec;57(2):335-42. doi: 10.1016/j.bone.2013.08.026. Epub 2013 Sep 5.
4
Heterotopic Ossification of the Peroneus Brevis Tendon in a Pediatric Patient.
J Foot Ankle Surg. 2017 Nov-Dec;56(6):1316-1319. doi: 10.1053/j.jfas.2017.05.031. Epub 2017 Jun 21.
6
More advantages in detecting bone and soft tissue metastases from prostate cancer using F-PSMA PET/CT.
Hell J Nucl Med. 2019 Jan-Apr;22(1):6-9. doi: 10.1967/s002449910952. Epub 2019 Mar 7.
10
Diagnosis and treatment of diabetic foot infections.
Plast Reconstr Surg. 2006 Jun;117(7 Suppl):212S-238S. doi: 10.1097/01.prs.0000222737.09322.77.

引用本文的文献

1
Raman spectral band imaging for the diagnostics and classification of canine and feline cutaneous tumors.
Vet Q. 2025 Dec;45(1):1-17. doi: 10.1080/01652176.2025.2486771. Epub 2025 Apr 9.
2
Dual-modality SEM-Raman smart scanning for fast hyperspectral Raman micro-imaging - application to bones.
Biomed Opt Express. 2025 Feb 7;16(3):935-948. doi: 10.1364/BOE.551298. eCollection 2025 Mar 1.
4
Identification of ceftazidime interaction with bacteria in wastewater treatment by Raman spectroscopic mapping.
RSC Adv. 2019 Oct 15;9(56):32744-32752. doi: 10.1039/c9ra06006e. eCollection 2019 Oct 10.
5
Quantitative chemical sensing of drugs in scattering media with Bessel beam Raman spectroscopy.
Biomed Opt Express. 2022 Mar 25;13(4):2488-2502. doi: 10.1364/BOE.455666. eCollection 2022 Apr 1.
6
[Research progress of traumatic heterotopic ossification].
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2022 Mar 15;36(3):386-394. doi: 10.7507/1002-1892.202110078.
7
Continuous-Wave Coherent Raman Spectroscopy via Plasmonic Enhancement.
Sci Rep. 2019 Aug 20;9(1):12092. doi: 10.1038/s41598-019-48573-8.
8
Narrowband-autofluorescence imaging for bone analysis.
Biomed Opt Express. 2019 Apr 11;10(5):2367-2382. doi: 10.1364/BOE.10.002367. eCollection 2019 May 1.
9
Emergence of two near-infrared windows for in vivo and intraoperative SERS.
Curr Opin Chem Biol. 2018 Aug;45:95-103. doi: 10.1016/j.cbpa.2018.03.015. Epub 2018 Apr 6.

本文引用的文献

1
Next-generation Raman tomography instrument for non-invasive in vivo bone imaging.
Biomed Opt Express. 2015 Feb 11;6(3):793-806. doi: 10.1364/BOE.6.000793. eCollection 2015 Mar 1.
2
Do inflammatory markers portend heterotopic ossification and wound failure in combat wounds?
Clin Orthop Relat Res. 2014 Sep;472(9):2845-54. doi: 10.1007/s11999-014-3694-7. Epub 2014 May 31.
3
Raman spectroscopic analysis of combat-related heterotopic ossification development.
Bone. 2013 Dec;57(2):335-42. doi: 10.1016/j.bone.2013.08.026. Epub 2013 Sep 5.
4
Raman and SERS microscopy for molecular imaging of live cells.
Nat Protoc. 2013 Apr;8(4):677-92. doi: 10.1038/nprot.2013.030. Epub 2013 Mar 7.
5
Early detection of burn induced heterotopic ossification using transcutaneous Raman spectroscopy.
Bone. 2013 May;54(1):28-34. doi: 10.1016/j.bone.2013.01.002. Epub 2013 Jan 11.
6
An unusual complication of an infiltrated intravenous catheter: heterotopic ossification in a newborn.
J Radiol Case Rep. 2008;2(2):13-5. doi: 10.3941/jrcr.v2i2.30. Epub 2008 Aug 1.
9
Heterotopic ossification following combat-related trauma.
J Bone Joint Surg Am. 2010 Dec;92 Suppl 2:74-89. doi: 10.2106/JBJS.J.00776.
10
Heterotopic ossification in wartime wounds.
J Surg Orthop Adv. 2010 Spring;19(1):54-61.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验