Suppr超能文献

一种使用基于QoS的Web服务排名算法的自动Web服务组合框架。

An Automatic Web Service Composition Framework Using QoS-Based Web Service Ranking Algorithm.

作者信息

Mallayya Deivamani, Ramachandran Baskaran, Viswanathan Suganya

机构信息

Department of Computer Science and Engineering, College of Engineering, Guindy, Anna University, Chennai 600025, India.

出版信息

ScientificWorldJournal. 2015;2015:207174. doi: 10.1155/2015/207174. Epub 2015 Oct 1.

Abstract

Web service has become the technology of choice for service oriented computing to meet the interoperability demands in web applications. In the Internet era, the exponential addition of web services nominates the "quality of service" as essential parameter in discriminating the web services. In this paper, a user preference based web service ranking (UPWSR) algorithm is proposed to rank web services based on user preferences and QoS aspect of the web service. When the user's request cannot be fulfilled by a single atomic service, several existing services should be composed and delivered as a composition. The proposed framework allows the user to specify the local and global constraints for composite web services which improves flexibility. UPWSR algorithm identifies best fit services for each task in the user request and, by choosing the number of candidate services for each task, reduces the time to generate the composition plans. To tackle the problem of web service composition, QoS aware automatic web service composition (QAWSC) algorithm proposed in this paper is based on the QoS aspects of the web services and user preferences. The proposed framework allows user to provide feedback about the composite service which improves the reputation of the services.

摘要

Web服务已成为面向服务计算的首选技术,以满足Web应用程序中的互操作性需求。在互联网时代,Web服务的指数级增长将“服务质量”指定为区分Web服务的关键参数。本文提出了一种基于用户偏好的Web服务排序(UPWSR)算法,用于根据用户偏好和Web服务的QoS方面对Web服务进行排序。当单个原子服务无法满足用户请求时,应组合并交付多个现有服务作为一个组合。所提出的框架允许用户为复合Web服务指定局部和全局约束,从而提高了灵活性。UPWSR算法为用户请求中的每个任务识别最合适的服务,并通过为每个任务选择候选服务的数量,减少生成组合计划的时间。为了解决Web服务组合问题,本文提出的基于QoS感知的自动Web服务组合(QAWSC)算法基于Web服务的QoS方面和用户偏好。所提出的框架允许用户提供关于复合服务的反馈,从而提高服务的声誉。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/363d/4609527/9e78ae6d9232/TSWJ2015-207174.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验