Suppr超能文献

利用改进的软件源代码度量指标进行 Web 服务 QoS 预测。

Web service QoS prediction using improved software source code metrics.

机构信息

Victoria University, Melbourne, Australia.

Swinburne University of Technology, Melbourne, Australia.

出版信息

PLoS One. 2020 Jan 15;15(1):e0226867. doi: 10.1371/journal.pone.0226867. eCollection 2020.

Abstract

Due to the popularity of Web-based applications, various developers have provided an abundance of Web services with similar functionality. Such similarity makes it challenging for users to discover, select, and recommend appropriate Web services for the service-oriented systems. Quality of Service (QoS) has become a vital criterion for service discovery, selection, and recommendation. Unfortunately, service registries cannot ensure the validity of the available quality values of the Web services provided online. Consequently, predicting the Web services' QoS values has become a vital way to find the most appropriate services. In this paper, we propose a novel methodology for predicting Web service QoS using source code metrics. The core component is aggregating software metrics using inequality distribution from micro level of individual class to the macro level of the entire Web service. We used correlation between QoS and software metrics to train the learning machine. We validate and evaluate our approach using three sets of software quality metrics. Our results show that the proposed methodology can help improve the efficiency for the prediction of QoS properties using its source code metrics.

摘要

由于基于 Web 的应用程序的普及,各种开发人员提供了大量具有相似功能的 Web 服务。这种相似性使得用户难以发现、选择和推荐面向服务的系统的合适 Web 服务。服务质量 (QoS) 已成为服务发现、选择和推荐的重要标准。然而,服务注册中心无法确保在线提供的 Web 服务的可用质量值的有效性。因此,预测 Web 服务的 QoS 值已成为找到最合适服务的重要途径。在本文中,我们提出了一种使用源代码度量值预测 Web 服务 QoS 的新方法。该方法的核心组件是使用不平等分布从单个类的微观级别聚合软件度量值到整个 Web 服务的宏观级别。我们使用 QoS 和软件度量值之间的相关性来训练学习机。我们使用三组软件质量度量值来验证和评估我们的方法。我们的结果表明,该方法可以帮助提高使用源代码度量值预测 QoS 属性的效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da04/6961915/13d3beac698f/pone.0226867.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验