Gill Luther C, Gransee Heather M, Sieck Gary C, Mantilla Carlos B
Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55906, United States.
Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55906, United States; Department of Anesthesiology, Mayo Clinic, Rochester, MN 55906, United States.
Respir Physiol Neurobiol. 2016 Jun;226:128-36. doi: 10.1016/j.resp.2015.10.009. Epub 2015 Oct 23.
Cervical spinal cord injury (SCI) interrupts descending neural drive to phrenic motoneurons causing diaphragm muscle (DIAm) paralysis. Recent studies using a well-established model of SCI, unilateral spinal hemisection of the C2 segment of the cervical spinal cord (SH), provide novel information regarding the molecular and cellular mechanisms of functional recovery after SCI. Over time post-SH, gradual recovery of rhythmic ipsilateral DIAm activity occurs. Recovery of ipsilateral DIAm electromyogram (EMG) activity following SH is enhanced by increasing brain-derived neurotrophic factor (BDNF) in the region of the phrenic motoneuron pool. Delivery of exogenous BDNF either via intrathecal infusion or via mesenchymal stem cells engineered to release BDNF similarly enhance recovery. Conversely, recovery after SH is blunted by quenching endogenous BDNF with the fusion-protein TrkB-Fc in the region of the phrenic motoneuron pool or by selective inhibition of TrkB kinase activity using a chemical-genetic approach in TrkB(F616A) mice. Furthermore, the importance of BDNF signaling via TrkB receptors at phrenic motoneurons is highlighted by the blunting of recovery by siRNA-mediated downregulation of TrkB receptor expression in phrenic motoneurons and by the enhancement of recovery evident following virally-induced increases in TrkB expression specifically in phrenic motoneurons. BDNF/TrkB signaling regulates synaptic plasticity in various neuronal systems, including glutamatergic pathways. Glutamatergic neurotransmission constitutes the main inspiratory-related, excitatory drive to motoneurons, and following SH, spontaneous neuroplasticity is associated with increased expression of ionotropic N-methyl-d-aspartate (NMDA) receptors in phrenic motoneurons. Evidence for the role of BDNF/TrkB and glutamatergic signaling in recovery of DIAm activity following cervical SCI is reviewed.
颈脊髓损伤(SCI)会中断向膈运动神经元的下行神经驱动,导致膈肌(DIAm)麻痹。最近使用一种成熟的SCI模型,即颈脊髓C2节段单侧脊髓半横断(SH)进行的研究,提供了关于SCI后功能恢复的分子和细胞机制的新信息。在SH后的一段时间内,同侧DIAm有节奏的活动会逐渐恢复。通过增加膈运动神经元池区域的脑源性神经营养因子(BDNF),可增强SH后同侧DIAm肌电图(EMG)活动的恢复。通过鞘内注射或经工程改造以释放BDNF的间充质干细胞递送外源性BDNF同样可增强恢复。相反,在膈运动神经元池区域用融合蛋白TrkB-Fc淬灭内源性BDNF,或在TrkB(F616A)小鼠中使用化学遗传学方法选择性抑制TrkB激酶活性,会使SH后的恢复减弱。此外,通过siRNA介导膈运动神经元中TrkB受体表达下调导致恢复减弱,以及通过病毒诱导膈运动神经元中TrkB表达特异性增加后恢复增强,突出了膈运动神经元处通过TrkB受体的BDNF信号传导的重要性。BDNF/TrkB信号传导调节包括谷氨酸能通路在内的各种神经元系统中的突触可塑性。谷氨酸能神经传递构成了对运动神经元主要的吸气相关兴奋性驱动,并且在SH后,自发性神经可塑性与膈运动神经元中离子型N-甲基-D-天冬氨酸(NMDA)受体表达增加有关。本文综述了BDNF/TrkB和谷氨酸能信号传导在颈SCI后DIAm活动恢复中的作用证据。