Suppr超能文献

颈脊髓损伤后的功能恢复:神经营养因子和谷氨酸能信号在膈运动神经元中的作用。

Functional recovery after cervical spinal cord injury: Role of neurotrophin and glutamatergic signaling in phrenic motoneurons.

作者信息

Gill Luther C, Gransee Heather M, Sieck Gary C, Mantilla Carlos B

机构信息

Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55906, United States.

Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55906, United States; Department of Anesthesiology, Mayo Clinic, Rochester, MN 55906, United States.

出版信息

Respir Physiol Neurobiol. 2016 Jun;226:128-36. doi: 10.1016/j.resp.2015.10.009. Epub 2015 Oct 23.

Abstract

Cervical spinal cord injury (SCI) interrupts descending neural drive to phrenic motoneurons causing diaphragm muscle (DIAm) paralysis. Recent studies using a well-established model of SCI, unilateral spinal hemisection of the C2 segment of the cervical spinal cord (SH), provide novel information regarding the molecular and cellular mechanisms of functional recovery after SCI. Over time post-SH, gradual recovery of rhythmic ipsilateral DIAm activity occurs. Recovery of ipsilateral DIAm electromyogram (EMG) activity following SH is enhanced by increasing brain-derived neurotrophic factor (BDNF) in the region of the phrenic motoneuron pool. Delivery of exogenous BDNF either via intrathecal infusion or via mesenchymal stem cells engineered to release BDNF similarly enhance recovery. Conversely, recovery after SH is blunted by quenching endogenous BDNF with the fusion-protein TrkB-Fc in the region of the phrenic motoneuron pool or by selective inhibition of TrkB kinase activity using a chemical-genetic approach in TrkB(F616A) mice. Furthermore, the importance of BDNF signaling via TrkB receptors at phrenic motoneurons is highlighted by the blunting of recovery by siRNA-mediated downregulation of TrkB receptor expression in phrenic motoneurons and by the enhancement of recovery evident following virally-induced increases in TrkB expression specifically in phrenic motoneurons. BDNF/TrkB signaling regulates synaptic plasticity in various neuronal systems, including glutamatergic pathways. Glutamatergic neurotransmission constitutes the main inspiratory-related, excitatory drive to motoneurons, and following SH, spontaneous neuroplasticity is associated with increased expression of ionotropic N-methyl-d-aspartate (NMDA) receptors in phrenic motoneurons. Evidence for the role of BDNF/TrkB and glutamatergic signaling in recovery of DIAm activity following cervical SCI is reviewed.

摘要

颈脊髓损伤(SCI)会中断向膈运动神经元的下行神经驱动,导致膈肌(DIAm)麻痹。最近使用一种成熟的SCI模型,即颈脊髓C2节段单侧脊髓半横断(SH)进行的研究,提供了关于SCI后功能恢复的分子和细胞机制的新信息。在SH后的一段时间内,同侧DIAm有节奏的活动会逐渐恢复。通过增加膈运动神经元池区域的脑源性神经营养因子(BDNF),可增强SH后同侧DIAm肌电图(EMG)活动的恢复。通过鞘内注射或经工程改造以释放BDNF的间充质干细胞递送外源性BDNF同样可增强恢复。相反,在膈运动神经元池区域用融合蛋白TrkB-Fc淬灭内源性BDNF,或在TrkB(F616A)小鼠中使用化学遗传学方法选择性抑制TrkB激酶活性,会使SH后的恢复减弱。此外,通过siRNA介导膈运动神经元中TrkB受体表达下调导致恢复减弱,以及通过病毒诱导膈运动神经元中TrkB表达特异性增加后恢复增强,突出了膈运动神经元处通过TrkB受体的BDNF信号传导的重要性。BDNF/TrkB信号传导调节包括谷氨酸能通路在内的各种神经元系统中的突触可塑性。谷氨酸能神经传递构成了对运动神经元主要的吸气相关兴奋性驱动,并且在SH后,自发性神经可塑性与膈运动神经元中离子型N-甲基-D-天冬氨酸(NMDA)受体表达增加有关。本文综述了BDNF/TrkB和谷氨酸能信号传导在颈SCI后DIAm活动恢复中的作用证据。

相似文献

1
Functional recovery after cervical spinal cord injury: Role of neurotrophin and glutamatergic signaling in phrenic motoneurons.
Respir Physiol Neurobiol. 2016 Jun;226:128-36. doi: 10.1016/j.resp.2015.10.009. Epub 2015 Oct 23.
2
Motoneuron BDNF/TrkB signaling enhances functional recovery after cervical spinal cord injury.
Exp Neurol. 2013 Sep;247:101-9. doi: 10.1016/j.expneurol.2013.04.002. Epub 2013 Apr 10.
3
Motoneuron glutamatergic receptor expression following recovery from cervical spinal hemisection.
J Comp Neurol. 2017 Apr 1;525(5):1192-1205. doi: 10.1002/cne.24125. Epub 2016 Nov 3.
4
TrkB gene therapy by adeno-associated virus enhances recovery after cervical spinal cord injury.
Exp Neurol. 2016 Feb;276:31-40. doi: 10.1016/j.expneurol.2015.11.007. Epub 2015 Dec 1.
5
Impact of glutamatergic and serotonergic neurotransmission on diaphragm muscle activity after cervical spinal hemisection.
J Neurophysiol. 2017 Sep 1;118(3):1732-1738. doi: 10.1152/jn.00345.2017. Epub 2017 Jun 28.
7
BDNF effects on functional recovery across motor behaviors after cervical spinal cord injury.
J Neurophysiol. 2017 Feb 1;117(2):537-544. doi: 10.1152/jn.00654.2016. Epub 2016 Nov 9.
8
Acute intrathecal BDNF enhances functional recovery after cervical spinal cord injury in rats.
J Neurophysiol. 2021 Jun 1;125(6):2158-2165. doi: 10.1152/jn.00146.2021. Epub 2021 May 5.
9
Contribution of 5-HT receptors on diaphragmatic recovery after chronic cervical spinal cord injury.
Respir Physiol Neurobiol. 2017 Oct;244:51-55. doi: 10.1016/j.resp.2017.07.003. Epub 2017 Jul 12.
10
Cervical spinal hemisection alters phrenic motor neuron glutamatergic mRNA receptor expression.
Exp Neurol. 2022 Jul;353:114030. doi: 10.1016/j.expneurol.2022.114030. Epub 2022 Mar 2.

引用本文的文献

1
Prospects and challenges in NMDAR signaling in spinal cord injury recovery and neural circuit remodeling.
Regen Ther. 2025 Apr 9;29:381-389. doi: 10.1016/j.reth.2025.03.008. eCollection 2025 Jun.
2
An update on spinal cord injury and diaphragm neuromotor control.
Expert Rev Respir Med. 2025 Jul;19(7):679-695. doi: 10.1080/17476348.2025.2495165. Epub 2025 Apr 22.
3
BDNF-TrkB Signaling Pathway in Spinal Cord Injury: Insights and Implications.
Mol Neurobiol. 2025 Feb;62(2):1904-1944. doi: 10.1007/s12035-024-04381-4. Epub 2024 Jul 24.
6
Cervical spinal hemisection alters phrenic motor neuron glutamatergic mRNA receptor expression.
Exp Neurol. 2022 Jul;353:114030. doi: 10.1016/j.expneurol.2022.114030. Epub 2022 Mar 2.
7
Spinally delivered ampakine CX717 increases phrenic motor output in adult rats.
Respir Physiol Neurobiol. 2022 Feb;296:103814. doi: 10.1016/j.resp.2021.103814. Epub 2021 Nov 11.
8
Respiratory Training and Plasticity After Cervical Spinal Cord Injury.
Front Cell Neurosci. 2021 Sep 21;15:700821. doi: 10.3389/fncel.2021.700821. eCollection 2021.
10
Acute intrathecal BDNF enhances functional recovery after cervical spinal cord injury in rats.
J Neurophysiol. 2021 Jun 1;125(6):2158-2165. doi: 10.1152/jn.00146.2021. Epub 2021 May 5.

本文引用的文献

1
The Impact of Midcervical Contusion Injury on Diaphragm Muscle Function.
J Neurotrauma. 2016 Mar 1;33(5):500-9. doi: 10.1089/neu.2015.4054. Epub 2015 Nov 19.
2
Tidal volume and diaphragm muscle activity in rats with cervical spinal cord injury.
J Phys Ther Sci. 2015 Mar;27(3):791-4. doi: 10.1589/jpts.27.791. Epub 2015 Mar 31.
3
Impact of unilateral denervation on transdiaphragmatic pressure.
Respir Physiol Neurobiol. 2015 May;210:14-21. doi: 10.1016/j.resp.2015.01.013. Epub 2015 Jan 29.
4
Ageing and neurotrophic signalling effects on diaphragm neuromuscular function.
J Physiol. 2015 Jan 15;593(2):431-40. doi: 10.1113/jphysiol.2014.282244. Epub 2014 Dec 1.
5
Neurotrophic factors for spinal cord repair: Which, where, how and when to apply, and for what period of time?
Brain Res. 2015 Sep 4;1619:36-71. doi: 10.1016/j.brainres.2014.10.049. Epub 2014 Nov 1.
6
Recruitment of rat diaphragm motor units across motor behaviors with different levels of diaphragm activation.
J Appl Physiol (1985). 2014 Dec 1;117(11):1308-16. doi: 10.1152/japplphysiol.01395.2013. Epub 2014 Sep 25.
7
TrkB kinase activity maintains synaptic function and structural integrity at adult neuromuscular junctions.
J Appl Physiol (1985). 2014 Oct 15;117(8):910-20. doi: 10.1152/japplphysiol.01386.2013. Epub 2014 Aug 28.
9
TrkB kinase activity is critical for recovery of respiratory function after cervical spinal cord hemisection.
Exp Neurol. 2014 Nov;261:190-5. doi: 10.1016/j.expneurol.2014.05.027. Epub 2014 Jun 5.
10
Rapid diaphragm atrophy following cervical spinal cord hemisection.
Respir Physiol Neurobiol. 2014 Feb 1;192:66-73. doi: 10.1016/j.resp.2013.12.006. Epub 2013 Dec 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验