Suppr超能文献

利用电子健康记录识别多囊卵巢综合征患者。

Identification of subjects with polycystic ovary syndrome using electronic health records.

作者信息

Castro Victor, Shen Yuanyuan, Yu Sheng, Finan Sean, Pau Cindy Ta, Gainer Vivian, Keefe Candace C, Savova Guergana, Murphy Shawn N, Cai Tianxi, Welt Corrine K

机构信息

Information Systems, Massachusetts General Hospital, Boston, MA, USA.

Biostatistics, Harvard School of Public Health, Boston, MA, USA.

出版信息

Reprod Biol Endocrinol. 2015 Oct 29;13:116. doi: 10.1186/s12958-015-0115-z.

Abstract

BACKGROUND

Polycystic ovary syndrome (PCOS) is a heterogeneous disorder because of the variable criteria used for diagnosis. Therefore, International Classification of Diseases 9 (ICD-9) codes may not accurately capture the diagnostic criteria necessary for large scale PCOS identification. We hypothesized that use of electronic medical records text and data would more specifically capture PCOS subjects.

METHODS

Subjects with PCOS were identified in the Partners Healthcare Research Patients Data Registry by searching for the term "polycystic ovary syndrome" using natural language processing (n = 24,930). A training subset of 199 identified charts was reviewed and categorized based on likelihood of a true Rotterdam PCOS diagnosis, i.e. two out of three of the following: irregular menstrual cycles, hyperandrogenism and/or polycystic ovary morphology. Data from the history, physical exam, laboratory and radiology results were codified and extracted from notes of definite PCOS subjects. Thirty-two terms were used to build an algorithm for identifying definite PCOS cases and applied to the rest of the dataset. The positive predictive value cutoff was set at 76.8 % to maximize the number of subjects available for study. A true positive predictive value for the algorithm was calculated after review of 100 charts from subjects identified as definite PCOS cases with at least two documented Rotterdam criteria. The positive predictive value was compared to that calculated using 200 charts identified using the ICD-9 code for PCOS (256.4; n = 13,670). In addition, a cohort of previously recruited PCOS subjects was submitted for algorithm validation.

RESULTS

Chart review demonstrated that 64 % were confirmed as definitely PCOS using the algorithm, with a 9 % false positive rate. 66 % of subjects identified by ICD-9 code for PCOS could be confirmed as definitely PCOS, with an 8.5 % false positive rate. There was no significant difference in the positive predictive values using the two methods (p = 0.2). However, the number of charts that had insufficient confirmatory data was lower using the algorithm (5 % vs 11 %; p < 0.04). Of 477 subjects with PCOS recruited and examined individually and present in the database as patients, 451 were found within the algorithm dataset.

CONCLUSIONS

Extraction of text parameters along with codified data improves the confidence in PCOS patient cohorts identified using the electronic medical record. However, the positive predictive value was not significantly different when using ICD-9 codes or the specific algorithm. Further studies are needed to determine the positive predictive value of the two methods in additional electronic medical record datasets.

摘要

背景

多囊卵巢综合征(PCOS)是一种异质性疾病,因为其诊断标准多样。因此,国际疾病分类第9版(ICD - 9)编码可能无法准确涵盖大规模PCOS识别所需的诊断标准。我们推测使用电子病历文本和数据能更准确地识别PCOS患者。

方法

通过自然语言处理在合作伙伴医疗保健研究患者数据登记处搜索“多囊卵巢综合征”一词,识别出PCOS患者(n = 24,930)。对199份已识别的病历进行回顾,并根据真正符合鹿特丹PCOS诊断的可能性进行分类,即以下三项中的两项:月经周期不规律、高雄激素血症和/或多囊卵巢形态。从确诊为PCOS的患者病历中整理并提取病史、体格检查以及实验室和影像学检查结果的数据。使用32个术语构建一个识别确诊PCOS病例的算法,并应用于数据集的其余部分。将阳性预测值的截断值设定为76.8%,以最大化可供研究的患者数量。在审查了100份被确定为具有至少两项记录在案的鹿特丹标准的确诊PCOS病例的病历后,计算该算法的真阳性预测值。将该阳性预测值与使用ICD - 9编码PCOS(256.4;n = 13,670)识别出的200份病历计算出的阳性预测值进行比较。此外,将一组先前招募的PCOS患者提交进行算法验证。

结果

病历审查表明,使用该算法64%的患者被确诊为PCOS,假阳性率为9%。通过ICD - 9编码识别出的PCOS患者中,66%可被确诊为PCOS,假阳性率为8.5%。两种方法的阳性预测值无显著差异(p = 0.2)。然而,使用该算法时,缺乏确证数据的病历数量较少(5%对11%;p < 0.04)。在数据库中作为患者单独招募和检查的477例PCOS患者中,451例在算法数据集中被发现。

结论

提取文本参数以及整理后的数据可提高对使用电子病历识别出的PCOS患者队列的可信度。然而,使用ICD - 9编码或特定算法时,阳性预测值无显著差异。需要进一步研究以确定这两种方法在其他电子病历数据集中的阳性预测值。

相似文献

引用本文的文献

9
Trends in Screening for Diabetes in Early Pregnancy in the United States.美国早期妊娠糖尿病筛查的趋势。
J Womens Health (Larchmt). 2023 Apr;32(4):416-422. doi: 10.1089/jwh.2022.0305. Epub 2023 Feb 15.

本文引用的文献

1
Sparse kernel machine regression for ordinal outcomes.用于有序结果的稀疏核机器回归
Biometrics. 2015 Mar;71(1):63-70. doi: 10.1111/biom.12223. Epub 2014 Sep 5.
3
Prevalence of polycystic ovary syndrome in adolescents.多囊卵巢综合征在青少年中的流行情况。
Fertil Steril. 2013 Aug;100(2):470-7. doi: 10.1016/j.fertnstert.2013.04.001. Epub 2013 Jun 5.
7
Evaluation of adolescents for polycystic ovary syndrome in an urban population.城市人群中青少年多囊卵巢综合征的评估
J Clin Res Pediatr Endocrinol. 2009;1(4):188-93. doi: 10.4274/jcrpe.v1i4.50. Epub 2009 May 5.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验