Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556 (USA).
Department of Chemistry, Holy Cross College, Notre Dame, IN 46556 (USA).
Angew Chem Int Ed Engl. 2015 Dec 14;54(51):15448-51. doi: 10.1002/anie.201507688. Epub 2015 Oct 30.
The preparation of 7-Fc(+) -8-Fc-7,8-nido-C2 B9 H10 (Fc(+) FcC2 B9 (-) ) demonstrates the successful incorporation of a carborane cage as an internal counteranion bridging between ferrocene and ferrocenium units. This neutral mixed-valence Fe(II) /Fe(III) complex overcomes the proximal electronic bias imposed by external counterions, a practical limitation in the use of molecular switches. A combination of UV/Vis-NIR spectroscopic and TD-DFT computational studies indicate that electron transfer within Fc(+) FcC2 B9 (-) is achieved through a bridge-mediated mechanism. This electronic framework therefore provides the possibility of an all-neutral null state, a key requirement for the implementation of quantum-dot cellular automata (QCA) molecular computing. The adhesion, ordering, and characterization of Fc(+) FcC2 B9 (-) on Au(111) has been observed by scanning tunneling microscopy.
7-Fc(+) -8-Fc-7,8-nido-C2 B9 H10 (Fc(+) FcC2 B9 (-))的制备证明了将笼状硼烷作为桥连配体成功地引入到二茂铁和二茂铁阳离子单元之间。这种中性混合价态 Fe(II)/Fe(III) 配合物克服了由外部抗衡离子施加的近端电子偏置,这是分子开关应用中的一个实际限制。紫外可见-近红外光谱和 TD-DFT 计算研究的组合表明,在 Fc(+) FcC2 B9 (-) 内的电子转移是通过桥介导机制实现的。因此,这个电子框架提供了实现量子点细胞自动机(QCA)分子计算的全中性零状态的可能性,这是 QCA 分子计算的关键要求。通过扫描隧道显微镜观察到 Fc(+) FcC2 B9 (-) 在 Au(111)上的粘附、有序和特性。