Suppr超能文献

Nitric Oxide Increases the Expression of Aquaporin-4 Protein in Rat Optic Nerve Astrocytes through the Cyclic Guanosine Monophosphate/Protein Kinase G Pathway.

作者信息

Oku Hidehiro, Morishita Seita, Horie Taeko, Kida Teruyo, Mimura Masashi, Fukumoto Masanori, Kojima Shota, Ikeda Tsunehiko

机构信息

Department of Ophthalmology, Osaka Medical College, Takatsuki, Japan.

出版信息

Ophthalmic Res. 2015;54(4):212-21. doi: 10.1159/000440846. Epub 2015 Oct 31.

Abstract

AIMS

Nitric oxide (NO) is associated with neuroinflammation in the central nervous system. We determined whether NO increases the expression of aquaporin-4 (AQP4) in optic nerve astrocytes of rats.

METHODS

Isolated astrocytes were incubated under normoxic or hypoxic conditions with or without glucose (5.5 mM). The astrocytes were also exposed to different concentrations of S-nitroso-N-acetyl-DL-penicillamine (SNAP, 1.0-100 μM), an NO donor. The expression of AQP4 was determined by Western blot analyses, and NO formation was measured by the Griess reaction. The changes in astrocytic cellular volumes were determined by flow cytometry.

RESULTS

Hypoxia and glucose deprivation increased AQP4 expression and NO formation. Inhibition of NO synthetase (NOS) significantly suppressed these changes. SNAP caused a significant increase in AQP4 expression, and the increase was significantly suppressed by carboxy-PTIO, a scavenger of NO. Incubation with 8-Br-cyclic guanosine monophosphate (cGMP) mimicked the effects of SNAP, while the addition of either 1H-[1,2,4]oxadiazolo[4,3,-a]quinoxalin-1-one (ODQ; inhibitor of soluble guanylate cyclase) or KT5823 (protein kinase G inhibitor) suppressed the SNAP-induced increase in AQP4 significantly. SNAP also caused a significant increase in astrocytic cellular volume through the AQP4 channels.

CONCLUSIONS

NO increased the AQP4 expression of optic nerve astrocytes through the cGMP/protein kinase G pathway and enlarged their volume.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验