Ulianov Sergey V, Khrameeva Ekaterina E, Gavrilov Alexey A, Flyamer Ilya M, Kos Pavel, Mikhaleva Elena A, Penin Aleksey A, Logacheva Maria D, Imakaev Maxim V, Chertovich Alexander, Gelfand Mikhail S, Shevelyov Yuri Y, Razin Sergey V
Institute of Gene Biology, RAS, 119334 Moscow, Russia; Department of Molecular Biology, Lomonosov Moscow State University, 119991 Moscow, Russia;
Skolkovo Institute of Science and Technology, 143026 Skolkovo, Russia; Institute for Information Transmission Problems (Kharkevich Institute), RAS, 127051 Moscow, Russia;
Genome Res. 2016 Jan;26(1):70-84. doi: 10.1101/gr.196006.115. Epub 2015 Oct 30.
Recent advances enabled by the Hi-C technique have unraveled many principles of chromosomal folding that were subsequently linked to disease and gene regulation. In particular, Hi-C revealed that chromosomes of animals are organized into topologically associating domains (TADs), evolutionary conserved compact chromatin domains that influence gene expression. Mechanisms that underlie partitioning of the genome into TADs remain poorly understood. To explore principles of TAD folding in Drosophila melanogaster, we performed Hi-C and poly(A)(+) RNA-seq in four cell lines of various origins (S2, Kc167, DmBG3-c2, and OSC). Contrary to previous studies, we find that regions between TADs (i.e., the inter-TADs and TAD boundaries) in Drosophila are only weakly enriched with the insulator protein dCTCF, while another insulator protein Su(Hw) is preferentially present within TADs. However, Drosophila inter-TADs harbor active chromatin and constitutively transcribed (housekeeping) genes. Accordingly, we find that binding of insulator proteins dCTCF and Su(Hw) predicts TAD boundaries much worse than active chromatin marks do. Interestingly, inter-TADs correspond to decompacted inter-bands of polytene chromosomes, whereas TADs mostly correspond to densely packed bands. Collectively, our results suggest that TADs are condensed chromatin domains depleted in active chromatin marks, separated by regions of active chromatin. We propose the mechanism of TAD self-assembly based on the ability of nucleosomes from inactive chromatin to aggregate, and lack of this ability in acetylated nucleosomal arrays. Finally, we test this hypothesis by polymer simulations and find that TAD partitioning may be explained by different modes of inter-nucleosomal interactions for active and inactive chromatin.
Hi-C技术带来的最新进展揭示了许多染色体折叠原理,这些原理随后与疾病和基因调控联系起来。特别是,Hi-C揭示了动物染色体被组织成拓扑相关结构域(TADs),这是一种影响基因表达的进化保守的紧密染色质结构域。将基因组划分为TADs的潜在机制仍知之甚少。为了探索黑腹果蝇中TAD折叠的原理,我们在四种不同来源的细胞系(S2、Kc167、DmBG3-c2和OSC)中进行了Hi-C和poly(A)(+) RNA测序。与之前的研究相反,我们发现果蝇中TAD之间的区域(即TAD间区域和TAD边界)仅微弱富集绝缘蛋白dCTCF,而另一种绝缘蛋白Su(Hw)则优先存在于TAD内部。然而,果蝇的TAD间区域含有活跃染色质和组成型转录(管家)基因。因此,我们发现绝缘蛋白dCTCF和Su(Hw)的结合预测TAD边界的能力比活跃染色质标记差得多。有趣的是,TAD间区域对应于多线染色体的解压缩间带,而TAD大多对应于紧密堆积的带。总体而言,我们的结果表明,TAD是活跃染色质标记缺失的浓缩染色质结构域,由活跃染色质区域分隔。我们基于非活性染色质的核小体聚集能力以及乙酰化核小体阵列中缺乏这种能力,提出了TAD自组装的机制。最后,我们通过聚合物模拟检验了这一假设,发现TAD划分可以用活跃和非活跃染色质的核小体间相互作用的不同模式来解释。