Ottou Abe M T, Correia N T, Ndjaka J M B, Affouard F
Unité Matériaux et Transformation (UMET), UMR CNRS 8207, UFR de Physique, BAT P5, Université Lille 1, 59655 Villeneuve d'Ascq, France.
Département de Physique, Faculté des Sciences, Université de Yaoundé I, B.P. 812, Yaoundé, Cameroun.
J Chem Phys. 2015 Oct 28;143(16):164506. doi: 10.1063/1.4933430.
In this paper, structural and dynamical properties of ibuprofen and ketoprofen glass-forming liquids have been investigated by means of molecular dynamics simulations. Molecular mobility of both materials is analyzed with respect to the different inter-molecular linear/cyclic hydrogen bonding associations. For ibuprofen, the dominant organization is found to be composed of small hydrogen bonding aggregates corresponding to cyclic dimers through the carboxyl group. For ketoprofen, the propensity of cyclic dimers is significantly reduced by the formation of hydrogen bonds with the ketone oxygen of the molecule altering the hydrogen bond (HB) associating structures that can be formed and thus molecular dynamics. The issue of the presence/absence of the peculiar low frequency Debye-type process in dielectric relaxation spectroscopy (DRS) data in these materials is addressed. Results obtained from simulations confirm that the Debye process originates from the internal cis-trans conversion of the -COOH carboxyl group. It is shown that the specific intermolecular HB structures associated to a given profen control the main dynamical features of this conversion, in particular its separation from the α-process, which make it detectable or not from DRS. For ibuprofen, the possible role of the -CCCO torsion motion, more "local" than the -COOH motion since it is less influenced by the intermolecular HBs, is suggested in the microscopic origin of the quite intense secondary γ-relaxation process detected from DRS.
在本文中,通过分子动力学模拟研究了布洛芬和酮洛芬玻璃形成液体的结构和动力学性质。针对不同的分子间线性/环状氢键缔合,分析了这两种材料的分子迁移率。对于布洛芬,发现主要的结构是由通过羧基形成的对应于环状二聚体的小氢键聚集体组成。对于酮洛芬,分子与酮基氧形成氢键会显著降低环状二聚体的倾向,从而改变可形成的氢键(HB)缔合结构,进而影响分子动力学。探讨了这些材料在介电弛豫谱(DRS)数据中是否存在特殊低频德拜型过程的问题。模拟结果证实,德拜过程源于-COOH羧基的内部顺反转换。结果表明,与特定洛芬相关的特定分子间HB结构控制着这种转换的主要动力学特征,特别是其与α过程的分离,这使得它在DRS中是否可检测。对于布洛芬,在从DRS检测到的相当强烈的次级γ弛豫过程的微观起源中,提出了-CCCO扭转运动的可能作用,该运动比-COOH运动更“局部”,因为它受分子间HBs的影响较小。