Dhabal Debdas, Nguyen Andrew Huy, Singh Murari, Khatua Prabir, Molinero Valeria, Bandyopadhyay Sanjoy, Chakravarty Charusita
Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India.
Department of Chemistry, University of Utah, Salt Lake City, Utah 84112-0850, USA.
J Chem Phys. 2015 Oct 28;143(16):164512. doi: 10.1063/1.4933420.
Molecular dynamics simulations are used to contrast the supercooling and crystallization behaviour of monatomic liquids that exemplify the transition from simple to anomalous, tetrahedral liquids. As examples of simple fluids, we use the Lennard-Jones (LJ) liquid and a pair-dominated Stillinger-Weber liquid (SW16). As examples of tetrahedral, water-like fluids, we use the Stillinger-Weber model with variable tetrahedrality parameterized for germanium (SW20), silicon (SW21), and water (SW(23.15) or mW model). The thermodynamic response functions show clear qualitative differences between simple and water-like liquids. For simple liquids, the compressibility and the heat capacity remain small on isobaric cooling. The tetrahedral liquids in contrast show a very sharp rise in these two response functions as the lower limit of liquid-phase stability is reached. While the thermal expansivity decreases with temperature but never crosses zero in simple liquids, in all three tetrahedral liquids at the studied pressure, there is a temperature of maximum density below which thermal expansivity is negative. In contrast to the thermodynamic response functions, the excess entropy on isobaric cooling does not show qualitatively different features for simple and water-like liquids; however, the slope and curvature of the entropy-temperature plots reflect the heat capacity trends. Two trajectory-based computational estimation methods for the entropy and the heat capacity are compared for possible structural insights into supercooling, with the entropy obtained from thermodynamic integration. The two-phase thermodynamic estimator for the excess entropy proves to be fairly accurate in comparison to the excess entropy values obtained by thermodynamic integration, for all five Lennard-Jones and Stillinger-Weber liquids. The entropy estimator based on the multiparticle correlation expansion that accounts for both pair and triplet correlations, denoted by S(trip), is also studied. S(trip) is a good entropy estimator for liquids where pair and triplet correlations are important such as Ge and Si, but loses accuracy for purely pair-dominated liquids, like LJ fluid, or near the crystallization temperature (T(thr)). Since local tetrahedral order is compatible with both liquid and crystalline states, the reorganisation of tetrahedral liquids is accompanied by a clear rise in the pair, triplet, and thermodynamic contributions to the heat capacity, resulting in the heat capacity anomaly. In contrast, the pair-dominated liquids show increasing dominance of triplet correlations on approaching crystallization but no sharp rise in either the pair or thermodynamic heat capacities.
分子动力学模拟用于对比单原子液体的过冷和结晶行为,这些单原子液体体现了从简单液体到反常四面体液体的转变。作为简单流体的例子,我们使用 Lennard-Jones(LJ)液体和一种对主导的 Stillinger-Weber 液体(SW16)。作为四面体类水流体的例子,我们使用针对锗(SW20)、硅(SW21)和水(SW(23.15) 或 mW 模型)参数化的具有可变四面体性的 Stillinger-Weber 模型。热力学响应函数显示出简单液体和类水液体之间明显的定性差异。对于简单液体,在等压冷却过程中,压缩性和热容量保持较小。相比之下,四面体液体在达到液相稳定性下限后,这两个响应函数会急剧上升。虽然简单液体的热膨胀系数随温度降低,但从不越过零,在所研究压力下的所有三种四面体液体中,存在一个最大密度温度,低于该温度热膨胀系数为负。与热力学响应函数不同,等压冷却时的过量熵对于简单液体和类水液体没有显示出定性不同的特征;然而,熵 - 温度图的斜率和曲率反映了热容量趋势。为了对过冷现象有可能的结构洞察,比较了两种基于轨迹的熵和热容量计算估计方法,其中熵通过热力学积分获得。对于所有五种 Lennard-Jones 和 Stillinger-Weber 液体,与通过热力学积分获得的过量熵值相比,过量熵的两相热力学估计器被证明相当准确。还研究了基于多粒子关联展开的熵估计器,该展开考虑了对和三重态关联,记为 S(trip)。对于对和三重态关联很重要的液体,如锗和硅,S(trip) 是一个很好的熵估计器,但对于纯粹对主导的液体,如 LJ 流体,或在接近结晶温度(T(thr))时,它会失去准确性。由于局部四面体有序与液态和晶态都兼容,四面体液体的重组伴随着对、三重态和热容量的热力学贡献明显增加,从而导致热容量异常。相比之下,对主导的液体在接近结晶时三重态关联的主导性增加,但对热容量或热力学热容量都没有急剧上升。