Osawa Takahiro, Hafez Khaled S, Miller David C, Montgomery Jeffrey S, Morgan Todd M, Palapattu Ganesh S, Weizer Alon Z, Caoili Elaine M, Ellis James H, Kunju Lakshmi P, Wolf J Stuart
Department of Urology, University of Michigan Health System, Ann Arbor, Michigan.
Department of Radiology, University of Michigan Health System, Ann Arbor, Michigan.
J Urol. 2016 Mar;195(3):574-80. doi: 10.1016/j.juro.2015.10.137. Epub 2015 Oct 30.
A previously published risk stratification algorithm based on renal mass biopsy and radiographic mass size was useful to designate surveillance vs the need for immediate treatment of small renal masses. Nonetheless, there were some incorrect assignments, most notably when renal mass biopsy indicated low risk malignancy but final pathology revealed high risk malignancy. We studied other factors that might improve the accuracy of this algorithm.
For 202 clinically localized small renal masses in a total of 200 patients with available R.E.N.A.L. (radius, exophytic/endophytic, nearness of tumor to collecting system or sinus, anterior/posterior, hilar tumor touching main renal artery or vein and location relative to polar lines) nephrometry score, preoperative renal mass biopsy and final pathology we assessed the accuracy of management assignment (surveillance vs treatment) based on the previously published risk stratification algorithm as confirmed by final pathology. Logistic regression was used to determine whether other factors (age, gender, R.E.N.A.L. score, R.E.N.A.L. score components and nomograms based on R.E.N.A.L. score) could improve assignment.
Of the 202 small renal masses 53 (26%) were assigned to surveillance and 149 (74%) were assigned to treatment by the risk stratification algorithm. Of the 53 lesions assigned to surveillance 25 (47%) had benign/favorable renal mass biopsy histology while in 28 (53%) intermediate renal mass biopsy histology showed a mass size less than 2 cm. Nine of these 53 masses (17%) were incorrectly assigned to surveillance in that final pathology indicated the need for treatment (ie intermediate histology and a mass greater than 2 cm or unfavorable histology). Final pathology confirmed a correct assignment in all 149 masses assigned to treatment. None of the additional parameters assessed improved assignment with statistical significance.
Age, gender, R.E.N.A.L. nephrometry score, R.E.N.A.L. score components and nomograms or combinations of these factors do not improve the predictive performance of a small renal mass management risk stratification algorithm based on renal mass biopsy and radiographic mass size.
先前发表的基于肾肿块活检和影像学肿块大小的风险分层算法,对于确定小肾肿块是进行监测还是需要立即治疗很有用。尽管如此,仍存在一些错误的判定,最明显的是肾肿块活检显示为低风险恶性肿瘤,但最终病理结果却显示为高风险恶性肿瘤。我们研究了其他可能提高该算法准确性的因素。
对200例有可用R.E.N.A.L.(半径、外生性/内生性、肿瘤与集合系统或肾窦的接近程度、前后位、肾门肿瘤触及肾主动脉或静脉以及相对于极线的位置)肾计量评分、术前肾肿块活检和最终病理结果的202例临床局限性小肾肿块,我们根据先前发表的风险分层算法评估管理判定(监测与治疗)的准确性,并由最终病理结果确认。采用逻辑回归分析来确定其他因素(年龄、性别、R.E.N.A.L.评分、R.E.N.A.L.评分组成部分以及基于R.E.N.A.L.评分的列线图)是否能改善判定。
在这202个小肾肿块中,风险分层算法将53个(26%)判定为监测,149个(74%)判定为治疗。在判定为监测的53个病变中,25个(47%)肾肿块活检组织学为良性/良好,而在28个(53%)中肾肿块活检组织学显示肿块大小小于2 cm。这53个肿块中有9个(17%)被错误地判定为监测,因为最终病理结果表明需要治疗(即中等级别组织学且肿块大于2 cm或组织学不良)。最终病理结果证实,所有149个判定为治疗的肿块判定正确。所评估的其他参数均未显著改善判定。
年龄、性别、R.E.N.A.L.肾计量评分、R.E.N.A.L.评分组成部分以及这些因素的列线图或组合,并不能提高基于肾肿块活检和影像学肿块大小的小肾肿块管理风险分层算法的预测性能。