Departamento de Biología y Geología, Física y Química Inorgánica, E.S.C.E.T., Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Madrid, Spain.
Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques, BP 384, Siège ex-Pasna Zone Industrielle, Bou-Ismail CP 42004, Tipaza, Algérie.
Sci Total Environ. 2016 Sep 1;563-564:921-32. doi: 10.1016/j.scitotenv.2015.10.101. Epub 2015 Oct 31.
Novel nanomaterials based on doped TiO2 nanoparticles with different morphological, textural and band-gap properties have been synthesized using scalable methods. The influence of synthetic parameters such as titanium source (titanium(IV) isopropoxide and titanium(IV) butoxide), doping quantity (0%, 2% or 5% Zn), acidic solution for the hydrolysis reaction (ascorbic acid, nitric acid) and calcination temperatures (500°C and 600°C) was simultaneously investigated. The obtained nanomaterials were characterized by different methods and photocatalytic tests of methylene blue (MB) degradation under UV-light were conducted to determine their activity. The results revealed that the synthesized nanomaterials are porous aggregates with very high crystallinity and are mainly composed of the anatase phase; although their physical properties vary depending on the different synthetic parameters employed. These changes are able to modify the apparent rate constant of the degradation of MB up to one order of magnitude, indicating, substantial changes in their photoactivity. Hybrid materials TiO2-Pd nanoparticles have also been prepared, characterized and tested for hydrogen production using photocatalytic methanol reforming where supported palladium nanoparticles acted as co-catalyst. Furthermore, the hybrid materials TiO2-Pd nanoparticles were studied in photocatalytic tests of methylene blue degradation under visible LED-light. The results obtained in the production of hydrogen from the photocatalytic reforming of methanol by hybrid materials suggest that the reported hybrid systems could be suitable photocatalysts for future sustainable hydrogen production upon tuning of the morphological, textural and band gap energy properties to allow processes to be carried out under visible light.
已使用可扩展方法合成了基于掺杂 TiO2 纳米粒子的新型纳米材料,其具有不同的形态、结构和带隙特性。同时研究了合成参数(如钛源(钛(IV)异丙醇盐和钛(IV)丁醇盐)、掺杂量(0%、2%或 5% Zn)、水解反应的酸性溶液(抗坏血酸、硝酸)和煅烧温度(500°C 和 600°C))的影响。通过不同的方法对获得的纳米材料进行了表征,并进行了在紫外光下光催化降解亚甲基蓝(MB)的测试,以确定其活性。结果表明,合成的纳米材料是具有高结晶度的多孔聚集体,主要由锐钛矿相组成;尽管它们的物理性质因所采用的不同合成参数而异。这些变化能够将 MB 降解的表观速率常数提高一个数量级,表明其光活性发生了实质性变化。还制备、表征了 TiO2-Pd 纳米粒子的杂化材料,并将其用于光催化甲醇重整制氢的测试,其中负载钯纳米粒子作为助催化剂。此外,还在可见光 LED 光下进行了亚甲基蓝降解的光催化测试,研究了 TiO2-Pd 纳米粒子的杂化材料。甲醇光催化重整制氢的结果表明,所报道的杂化体系可能是适合未来可持续制氢的光催化剂,通过调整形态、结构和带隙能量特性,使其能够在可见光下进行反应。