Suppr超能文献

Mutation-Guided Unbiased Modeling of the Fat Sensor GPR119 for High-Yield Agonist Screening.

作者信息

Norn Christoffer, Hauge Maria, Engelstoft Maja S, Kim Sun Hee, Lehmann Juerg, Jones Robert M, Schwartz Thue W, Frimurer Thomas M

机构信息

NNF Center for Basic Metabolic Research, University of Copenhagen, Blegdamsvej 3, Copenhagen 2200, Denmark; NNF Center for Protein Research, University of Copenhagen, Blegdamsvej 3, Copenhagen 2200, Denmark.

Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, University of Copenhagen, Blegdamsvej 3, Copenhagen 2200, Denmark; NNF Center for Basic Metabolic Research, University of Copenhagen, Blegdamsvej 3, Copenhagen 2200, Denmark.

出版信息

Structure. 2015 Dec 1;23(12):2377-2386. doi: 10.1016/j.str.2015.09.014. Epub 2015 Oct 29.

Abstract

Recent benchmark studies have demonstrated the difficulties in obtaining accurate predictions of ligand binding conformations to comparative models of G-protein-coupled receptors. We have developed a data-driven optimization protocol, which integrates mutational data and structural information from multiple X-ray receptor structures in combination with a fully flexible ligand docking protocol to determine the binding conformation of AR231453, a small-molecule agonist, in the GPR119 receptor. Resulting models converge to one conformation that explains the majority of data from mutation studies and is consistent with the structure-activity relationship for a large number of AR231453 analogs. Another key property of the refined models is their success in separating active ligands from decoys in a large-scale virtual screening. These results demonstrate that mutation-guided receptor modeling can provide predictions of practical value for describing receptor-ligand interactions and drug discovery.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验