Suppr超能文献

免疫蛋白酶体对肿瘤进行编辑,随后肿瘤逃避免疫识别。

Immunoproteasomes edit tumors, which then escapes immune recognition.

作者信息

Joyce Sebastian

机构信息

Veterans Administration Tennessee Valley Healthcare System and the Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA.

出版信息

Eur J Immunol. 2015 Dec;45(12):3241-5. doi: 10.1002/eji.201546100. Epub 2015 Nov 17.

Abstract

In 1985, John Monaco--the discoverer of LMP-2 and -7, the inducible components of the immunoproteasome--asked his advanced immunology class as to why the MHC region contained not only structural genes, but several others as well, whose functions were then unknown. As we drew a blank, he quipped: perchance because many of the MHC genes are induced by IFN-γ! The ensuing three decades have witnessed the unveiling of the profound fundamental and clinical implications of that classroom tête-à-tête. Amongst its multitudinous effects, IFN-γ induces genes enhancing antigen processing and presentation to T cells; such as those encoding cellular proteases and activators of proteases. In this issue, Keller et al. [Eur. J. Immunol. 2015. 45: 3257-3268] demonstrate that the limited success of MART-1/Melan-A-targeted immunotherapy in melanoma patients could be due to inefficient MART-1(26-35) presentation, owing to the proteolytic activities of IFN-γ-inducible β2i/MECL-1, proteasome activator 28 (PA28), and endoplasmic reticulum-associated aminopeptidase-associated with antigen processing (ERAP). Specifically, whilst β2i and PA28 impede MART-1(26-35) liberation from its precursor protein, ERAP-1 degrades this epitope. Hence, critical to effective cancer immunotherapy is deep knowledge of T-cell-targeted tumor antigens and how cellular proteases generate protective epitope(s) from them, or destroy them.

摘要

1985年,免疫蛋白酶体诱导成分LMP - 2和 - 7的发现者约翰·莫纳科问他的高级免疫学课程班学生,为什么MHC区域不仅包含结构基因,还包含其他几个功能未知的基因。当我们无言以对时,他打趣道:难道是因为许多MHC基因是由γ干扰素诱导的!在随后的三十年里,那次课堂交谈所蕴含的深刻的基础和临床意义逐渐显现。在其众多作用中,γ干扰素诱导增强抗原加工并呈递给T细胞的基因;比如那些编码细胞蛋白酶和蛋白酶激活剂的基因。在本期中,凯勒等人[《欧洲免疫学杂志》2015年。45: 3257 - 3268]证明,针对黑色素瘤患者的MART - 1 /黑色素A靶向免疫疗法取得有限成功可能是由于MART - 1(26 - 35)呈递效率低下,这是由γ干扰素诱导的β2i / MECL - 1、蛋白酶体激活剂28(PA28)以及与抗原加工相关的内质网氨基肽酶(ERAP)的蛋白水解活性导致的。具体而言,虽然β2i和PA28阻碍MART - 1(26 - 35)从其前体蛋白中释放出来,但ERAP - 1会降解这个表位。因此,深入了解靶向T细胞的肿瘤抗原以及细胞蛋白酶如何从它们产生保护性表位或破坏它们,对于有效的癌症免疫疗法至关重要。

相似文献

引用本文的文献

4
Computational cancer neoantigen prediction: current status and recent advances.计算性癌症新抗原预测:现状与最新进展
Immunooncol Technol. 2021 Nov 20;12:100052. doi: 10.1016/j.iotech.2021.100052. eCollection 2021 Dec.

本文引用的文献

2
Neoantigens in cancer immunotherapy.肿瘤免疫治疗中的新生抗原
Science. 2015 Apr 3;348(6230):69-74. doi: 10.1126/science.aaa4971.
3
The future of immune checkpoint therapy.免疫检查点疗法的未来。
Science. 2015 Apr 3;348(6230):56-61. doi: 10.1126/science.aaa8172.
8
Paradigms of protein degradation by the proteasome.蛋白酶体降解蛋白质的模式。
Curr Opin Struct Biol. 2014 Feb;24:156-64. doi: 10.1016/j.sbi.2014.02.002. Epub 2014 Mar 14.
10
Molecular architecture and assembly of the eukaryotic proteasome.真核生物蛋白酶体的分子结构与组装。
Annu Rev Biochem. 2013;82:415-45. doi: 10.1146/annurev-biochem-060410-150257. Epub 2013 Mar 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验