Lücking Genia, Frenzel Elrike, Rütschle Andrea, Marxen Sandra, Stark Timo D, Hofmann Thomas, Scherer Siegfried, Ehling-Schulz Monika
Department of Microbiology, Central Institute for Food and Nutrition Research (Zentralinstitut für Ernährungs- und Lebensmittelforschung), Technische Universität München Freising, Germany.
Functional Microbiology, Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna Vienna, Austria.
Front Microbiol. 2015 Oct 13;6:1101. doi: 10.3389/fmicb.2015.01101. eCollection 2015.
The emetic toxin cereulide produced by Bacillus cereus is synthesized by the modular enzyme complex Ces that is encoded on a pXO1-like megaplasmid. To decipher the role of the genes adjacent to the structural genes cesA/cesB, coding for the non-ribosomal peptide synthetase (NRPS), gene inactivation- and overexpression mutants of the emetic strain F4810/72 were constructed and their impact on cereulide biosynthesis was assessed. The hydrolase CesH turned out to be a part of the complex regulatory network controlling cereulide synthesis on a transcriptional level, while the ABC transporter CesCD was found to be essential for post-translational control of cereulide synthesis. Using a gene inactivation approach, we show that the NRPS activating function of the phosphopantetheinyl transferase (PPtase) embedded in the ces locus was complemented by a chromosomally encoded Sfp-like PPtase, representing an interesting example for the functional interaction between a plasmid encoded NRPS and a chromosomally encoded activation enzyme. In summary, our results highlight the complexity of cereulide biosynthesis and reveal multiple levels of toxin formation control. ces operon internal genes were shown to play a pivotal role by acting at different levels of toxin production, thus complementing the action of the chromosomal key transcriptional regulators AbrB and CodY.
蜡样芽孢杆菌产生的催吐毒素cereulide由模块化酶复合物Ces合成,该复合物由类pXO1大质粒上编码的基因控制。为了解与结构基因cesA/cesB相邻的基因的作用,cesA/cesB编码非核糖体肽合成酶(NRPS),构建了催吐菌株F4810/72的基因失活和过表达突变体,并评估了它们对cereulide生物合成的影响。水解酶CesH被证明是在转录水平上控制cereulide合成的复杂调控网络的一部分,而ABC转运蛋白CesCD被发现对cereulide合成的翻译后控制至关重要。使用基因失活方法,我们表明嵌入ces基因座的磷酸泛酰巯基乙胺基转移酶(PPtase)的NRPS激活功能由染色体编码的Sfp样PPtase补充,这代表了质粒编码的NRPS与染色体编码的激活酶之间功能相互作用的一个有趣例子。总之,我们的结果突出了cereulide生物合成的复杂性,并揭示了毒素形成控制的多个水平。ces操纵子内部基因通过在毒素产生的不同水平上发挥作用而显示出关键作用,从而补充了染色体关键转录调节因子AbrB和CodY的作用。