Suppr超能文献

基于亲和传播的WiFi指纹室内定位中相似性度量选择的混合方法

A Mixed Approach to Similarity Metric Selection in Affinity Propagation-Based WiFi Fingerprinting Indoor Positioning.

作者信息

Caso Giuseppe, de Nardis Luca, di Benedetto Maria-Gabriella

机构信息

Department of Information Engineering, Electronics and Telecommunications (DIET), Sapienza University of Rome, Via Eudossiana 18, 00184, Rome, Italy.

出版信息

Sensors (Basel). 2015 Oct 30;15(11):27692-720. doi: 10.3390/s151127692.

Abstract

The weighted k-nearest neighbors (WkNN) algorithm is by far the most popular choice in the design of fingerprinting indoor positioning systems based on WiFi received signal strength (RSS). WkNN estimates the position of a target device by selecting k reference points (RPs) based on the similarity of their fingerprints with the measured RSS values. The position of the target device is then obtained as a weighted sum of the positions of the k RPs. Two-step WkNN positioning algorithms were recently proposed, in which RPs are divided into clusters using the affinity propagation clustering algorithm, and one representative for each cluster is selected. Only cluster representatives are then considered during the position estimation, leading to a significant computational complexity reduction compared to traditional, flat WkNN. Flat and two-step WkNN share the issue of properly selecting the similarity metric so as to guarantee good positioning accuracy: in two-step WkNN, in particular, the metric impacts three different steps in the position estimation, that is cluster formation, cluster selection and RP selection and weighting. So far, however, the only similarity metric considered in the literature was the one proposed in the original formulation of the affinity propagation algorithm. This paper fills this gap by comparing different metrics and, based on this comparison, proposes a novel mixed approach in which different metrics are adopted in the different steps of the position estimation procedure. The analysis is supported by an extensive experimental campaign carried out in a multi-floor 3D indoor positioning testbed. The impact of similarity metrics and their combinations on the structure and size of the resulting clusters, 3D positioning accuracy and computational complexity are investigated. Results show that the adoption of metrics different from the one proposed in the original affinity propagation algorithm and, in particular, the combination of different metrics can significantly improve the positioning accuracy while preserving the efficiency in computational complexity typical of two-step algorithms.

摘要

加权k近邻(WkNN)算法是目前基于WiFi接收信号强度(RSS)的指纹室内定位系统设计中最受欢迎的选择。WkNN通过根据参考点(RP)指纹与测量的RSS值的相似度选择k个参考点来估计目标设备的位置。然后将目标设备的位置作为k个参考点位置的加权和来获得。最近提出了两步WkNN定位算法,其中使用亲和传播聚类算法将参考点划分为簇,并为每个簇选择一个代表。然后在位置估计过程中仅考虑簇代表,与传统的平面WkNN相比,这显著降低了计算复杂度。平面WkNN和两步WkNN都存在正确选择相似性度量以保证良好定位精度的问题:特别是在两步WkNN中,该度量会影响位置估计中的三个不同步骤,即簇形成、簇选择以及参考点选择和加权。然而,到目前为止,文献中考虑的唯一相似性度量是亲和传播算法原始公式中提出的那个。本文通过比较不同的度量填补了这一空白,并基于此比较提出了一种新颖的混合方法,即在位置估计过程的不同步骤中采用不同的度量。在一个多层3D室内定位测试平台上进行的广泛实验活动支持了该分析。研究了相似性度量及其组合对所得簇的结构和大小、3D定位精度以及计算复杂度的影响。结果表明,采用不同于原始亲和传播算法中提出的度量,特别是不同度量的组合,可以显著提高定位精度,同时保持两步算法典型的计算复杂度效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4169/4701250/8b4596bba8af/sensors-15-27692-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验