Suppr超能文献

最大化边际和的多元有序回归。

Multiple Ordinal Regression by Maximizing the Sum of Margins.

出版信息

IEEE Trans Neural Netw Learn Syst. 2016 Oct;27(10):2072-83. doi: 10.1109/TNNLS.2015.2477321. Epub 2015 Oct 27.

Abstract

Human preferences are usually measured using ordinal variables. A system whose goal is to estimate the preferences of humans and their underlying decision mechanisms requires to learn the ordering of any given sample set. We consider the solution of this ordinal regression problem using a support vector machine algorithm. Specifically, the goal is to learn a set of classifiers with common direction vectors and different biases correctly separating the ordered classes. Current algorithms are either required to solve a quadratic optimization problem, which is computationally expensive, or based on maximizing the minimum margin (i.e., a fixed-margin strategy) between a set of hyperplanes, which biases the solution to the closest margin. Another drawback of these strategies is that they are limited to order the classes using a single ranking variable (e.g., perceived length). In this paper, we define a multiple ordinal regression algorithm based on maximizing the sum of the margins between every consecutive class with respect to one or more rankings (e.g., perceived length and weight). We provide derivations of an efficient, easy-to-implement iterative solution using a sequential minimal optimization procedure. We demonstrate the accuracy of our solutions in several data sets. In addition, we provide a key application of our algorithms in estimating human subjects' ordinal classification of attribute associations to object categories. We show that these ordinal associations perform better than the binary one typically employed in the literature.

摘要

人类的偏好通常使用序数变量来衡量。一个旨在估计人类偏好及其潜在决策机制的系统需要学习任何给定样本集的排序。我们使用支持向量机算法来解决这个有序回归问题。具体来说,目标是学习一组具有公共方向向量和不同偏差的分类器,正确分离有序的类别。当前的算法要么需要解决计算成本高昂的二次优化问题,要么基于最大化一组超平面之间的最小边际(即固定边际策略),这会使解决方案偏向于最近的边际。这些策略的另一个缺点是,它们仅限于使用单个排名变量(例如,感知长度)对类别进行排序。在本文中,我们定义了一种基于最大化每个连续类相对于一个或多个排名(例如,感知长度和重量)的边际之和的多元有序回归算法。我们提供了一种使用序列最小优化过程的高效、易于实现的迭代解决方案的推导。我们在几个数据集上证明了我们的解决方案的准确性。此外,我们还提供了我们的算法在估计人类主体对对象类别的属性关联的有序分类中的一个关键应用。我们表明,这些有序关联比文献中通常使用的二进制关联表现更好。

相似文献

1
Multiple Ordinal Regression by Maximizing the Sum of Margins.最大化边际和的多元有序回归。
IEEE Trans Neural Netw Learn Syst. 2016 Oct;27(10):2072-83. doi: 10.1109/TNNLS.2015.2477321. Epub 2015 Oct 27.
2
Support vector ordinal regression.支持向量序数回归
Neural Comput. 2007 Mar;19(3):792-815. doi: 10.1162/neco.2007.19.3.792.
3
Ordinal regression neural networks based on concentric hyperspheres.基于同心超球体的有序回归神经网络。
Neural Netw. 2014 Nov;59:51-60. doi: 10.1016/j.neunet.2014.07.001. Epub 2014 Jul 11.
6
Incremental Support Vector Learning for Ordinal Regression.序回归的增量支持向量学习。
IEEE Trans Neural Netw Learn Syst. 2015 Jul;26(7):1403-16. doi: 10.1109/TNNLS.2014.2342533. Epub 2014 Aug 12.
8
Incremental sparse Bayesian ordinal regression.递增稀疏贝叶斯有序回归。
Neural Netw. 2018 Oct;106:294-302. doi: 10.1016/j.neunet.2018.07.015. Epub 2018 Aug 2.

本文引用的文献

1
Ordinal neural networks without iterative tuning.无需迭代调整的序数神经网络。
IEEE Trans Neural Netw Learn Syst. 2014 Nov;25(11):2075-85. doi: 10.1109/TNNLS.2014.2304976.
2
Multiobjective optimization for model selection in kernel methods in regression.回归核方法模型选择的多目标优化。
IEEE Trans Neural Netw Learn Syst. 2014 Oct;25(10):1879-93. doi: 10.1109/TNNLS.2013.2297686.
3
Negative correlation ensemble learning for ordinal regression.有序回归的负相关集成学习。
IEEE Trans Neural Netw Learn Syst. 2013 Nov;24(11):1836-49. doi: 10.1109/TNNLS.2013.2268279.
4
Transductive ordinal regression.传导序回归。
IEEE Trans Neural Netw Learn Syst. 2012 Jul;23(7):1074-86. doi: 10.1109/TNNLS.2012.2198240.
5
Compound facial expressions of emotion.复合情绪表情。
Proc Natl Acad Sci U S A. 2014 Apr 15;111(15):E1454-62. doi: 10.1073/pnas.1322355111. Epub 2014 Mar 31.
7
Projection-based ensemble learning for ordinal regression.基于投影的有序回归集成学习。
IEEE Trans Cybern. 2014 May;44(5):681-94. doi: 10.1109/TCYB.2013.2266336. Epub 2013 Jun 27.
8
Kernel optimization in discriminant analysis.判别分析中的核优化。
IEEE Trans Pattern Anal Mach Intell. 2011 Mar;33(3):631-8. doi: 10.1109/TPAMI.2010.173.
10
Bayes optimality in linear discriminant analysis.线性判别分析中的贝叶斯最优性。
IEEE Trans Pattern Anal Mach Intell. 2008 Apr;30(4):647-57. doi: 10.1109/TPAMI.2007.70717.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验