Pan Fong Cheng, Brissova Marcela, Powers Alvin C, Pfaff Samuel, Wright Christopher V E
Vanderbilt University Program in Developmental Biology, Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
Development. 2015 Nov 1;142(21):3637-48. doi: 10.1242/dev.126011.
Homozygous Mnx1 mutation causes permanent neonatal diabetes in humans, but via unknown mechanisms. Our systematic and longitudinal analysis of Mnx1 function during murine pancreas organogenesis and into the adult uncovered novel stage-specific roles for Mnx1 in endocrine lineage allocation and β-cell fate maintenance. Inactivation in the endocrine-progenitor stage shows that Mnx1 promotes β-cell while suppressing δ-cell differentiation programs, and is crucial for postnatal β-cell fate maintenance. Inactivating Mnx1 in embryonic β-cells (Mnx1(Δbeta)) caused β-to-δ-like cell transdifferentiation, which was delayed until postnatal stages. In the latter context, β-cells escaping Mnx1 inactivation unexpectedly upregulated Mnx1 expression and underwent an age-independent persistent proliferation. Escaper β-cells restored, but then eventually surpassed, the normal pancreatic β-cell mass, leading to islet hyperplasia in aged mice. In vitro analysis of islets isolated from Mnx1(Δbeta) mice showed higher insulin secretory activity and greater insulin mRNA content than in wild-type islets. Mnx1(Δbeta) mice also showed a much faster return to euglycemia after β-cell ablation, suggesting that the new β-cells derived from the escaper population are functional. Our findings identify Mnx1 as an important factor in β-cell differentiation and proliferation, with the potential for targeting to increase the number of endogenous β-cells for diabetes therapy.
纯合子Mnx1突变会导致人类永久性新生儿糖尿病,但其机制尚不清楚。我们对小鼠胰腺器官发生过程及成年期Mnx1功能进行了系统的纵向分析,发现Mnx1在内分泌谱系分配和β细胞命运维持中具有新的阶段特异性作用。在内分泌祖细胞阶段失活表明,Mnx1促进β细胞分化,同时抑制δ细胞分化程序,对出生后β细胞命运维持至关重要。在胚胎β细胞中使Mnx1失活(Mnx1(Δbeta))会导致β细胞向δ样细胞转分化,这种转分化会延迟到出生后阶段。在后一种情况下,逃避Mnx1失活的β细胞意外地上调了Mnx1表达,并经历了与年龄无关的持续增殖。逃避者β细胞恢复了正常胰腺β细胞量,但最终超过了正常量,导致老年小鼠胰岛增生。对从Mnx1(Δbeta)小鼠分离的胰岛进行体外分析发现,其胰岛素分泌活性和胰岛素mRNA含量均高于野生型胰岛。Mnx1(Δbeta)小鼠在β细胞消融后也显示出更快恢复到正常血糖水平,这表明从逃避者群体衍生的新β细胞具有功能。我们的研究结果表明Mnx1是β细胞分化和增殖的重要因素,具有靶向作用以增加内源性β细胞数量用于糖尿病治疗的潜力。