Suppr超能文献

基于模拟的牛死亡率记录中疾病相关异常特征检测算法性能评估

Simulation-Based Evaluation of the Performances of an Algorithm for Detecting Abnormal Disease-Related Features in Cattle Mortality Records.

作者信息

Perrin Jean-Baptiste, Durand Benoît, Gay Emilie, Ducrot Christian, Hendrikx Pascal, Calavas Didier, Hénaux Viviane

机构信息

Unité Epidémiologie, Agence nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail-Laboratoire de Lyon, Lyon, France.

Unité Epidémiologie animale, UR346, INRA, St Genès Champanelle, France.

出版信息

PLoS One. 2015 Nov 4;10(11):e0141273. doi: 10.1371/journal.pone.0141273. eCollection 2015.

Abstract

We performed a simulation study to evaluate the performances of an anomaly detection algorithm considered in the frame of an automated surveillance system of cattle mortality. The method consisted in a combination of temporal regression and spatial cluster detection which allows identifying, for a given week, clusters of spatial units showing an excess of deaths in comparison with their own historical fluctuations. First, we simulated 1,000 outbreaks of a disease causing extra deaths in the French cattle population (about 200,000 herds and 20 million cattle) according to a model mimicking the spreading patterns of an infectious disease and injected these disease-related extra deaths in an authentic mortality dataset, spanning from January 2005 to January 2010. Second, we applied our algorithm on each of the 1,000 semi-synthetic datasets to identify clusters of spatial units showing an excess of deaths considering their own historical fluctuations. Third, we verified if the clusters identified by the algorithm did contain simulated extra deaths in order to evaluate the ability of the algorithm to identify unusual mortality clusters caused by an outbreak. Among the 1,000 simulations, the median duration of simulated outbreaks was 8 weeks, with a median number of 5,627 simulated deaths and 441 infected herds. Within the 12-week trial period, 73% of the simulated outbreaks were detected, with a median timeliness of 1 week, and a mean of 1.4 weeks. The proportion of outbreak weeks flagged by an alarm was 61% (i.e. sensitivity) whereas one in three alarms was a true alarm (i.e. positive predictive value). The performances of the detection algorithm were evaluated for alternative combination of epidemiologic parameters. The results of our study confirmed that in certain conditions automated algorithms could help identifying abnormal cattle mortality increases possibly related to unidentified health events.

摘要

我们进行了一项模拟研究,以评估在牛死亡率自动监测系统框架下所考虑的异常检测算法的性能。该方法包括时间回归和空间聚类检测相结合,这使得能够针对给定的一周,识别出与自身历史波动相比显示出死亡人数过多的空间单元集群。首先,我们根据模拟传染病传播模式的模型,在法国牛群(约20万群,2000万头牛)中模拟了1000次导致额外死亡的疾病爆发,并将这些与疾病相关的额外死亡数据注入到一个从2005年1月到2010年1月的真实死亡率数据集中。其次,我们将算法应用于这1000个半合成数据集中的每一个,以识别出考虑到自身历史波动而显示出死亡人数过多的空间单元集群。第三,我们验证算法识别出的集群是否确实包含模拟的额外死亡数据,以便评估算法识别由疫情引起的异常死亡集群的能力。在1000次模拟中,模拟疫情的持续时间中位数为8周,模拟死亡人数中位数为5627人,受感染牛群中位数为441群。在12周的试验期内,73%的模拟疫情被检测到,及时性中位数为1周,平均为1.4周。警报标记的疫情周比例为61%(即灵敏度),而每三个警报中有一个是真正的警报(即阳性预测值)。针对流行病学参数的替代组合评估了检测算法的性能。我们的研究结果证实,在某些情况下,自动化算法有助于识别可能与未识别的健康事件相关的异常牛死亡率增加情况。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1248/4633029/58c27ec4540f/pone.0141273.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验