Suppr超能文献

因诊断测试结果不完善导致的逻辑回归偏差及实际校正方法。

Bias in logistic regression due to imperfect diagnostic test results and practical correction approaches.

作者信息

Valle Denis, Lima Joanna M Tucker, Millar Justin, Amratia Punam, Haque Ubydul

机构信息

School of Forest Resources and Conservation, University of Florida, Gainesville, USA.

Emerging Pathogens Institute, University of Florida, Gainesville, USA.

出版信息

Malar J. 2015 Nov 4;14:434. doi: 10.1186/s12936-015-0966-y.

Abstract

BACKGROUND

Logistic regression is a statistical model widely used in cross-sectional and cohort studies to identify and quantify the effects of potential disease risk factors. However, the impact of imperfect tests on adjusted odds ratios (and thus on the identification of risk factors) is under-appreciated. The purpose of this article is to draw attention to the problem associated with modelling imperfect diagnostic tests, and propose simple Bayesian models to adequately address this issue.

METHODS

A systematic literature review was conducted to determine the proportion of malaria studies that appropriately accounted for false-negatives/false-positives in a logistic regression setting. Inference from the standard logistic regression was also compared with that from three proposed Bayesian models using simulations and malaria data from the western Brazilian Amazon.

RESULTS

A systematic literature review suggests that malaria epidemiologists are largely unaware of the problem of using logistic regression to model imperfect diagnostic test results. Simulation results reveal that statistical inference can be substantially improved when using the proposed Bayesian models versus the standard logistic regression. Finally, analysis of original malaria data with one of the proposed Bayesian models reveals that microscopy sensitivity is strongly influenced by how long people have lived in the study region, and an important risk factor (i.e., participation in forest extractivism) is identified that would have been missed by standard logistic regression.

CONCLUSION

Given the numerous diagnostic methods employed by malaria researchers and the ubiquitous use of logistic regression to model the results of these diagnostic tests, this paper provides critical guidelines to improve data analysis practice in the presence of misclassification error. Easy-to-use code that can be readily adapted to WinBUGS is provided, enabling straightforward implementation of the proposed Bayesian models.

摘要

背景

逻辑回归是一种广泛应用于横断面研究和队列研究的统计模型,用于识别和量化潜在疾病风险因素的影响。然而,不完善的检测对调整后的比值比(进而对风险因素的识别)的影响尚未得到充分认识。本文旨在提请人们关注与对不完善诊断检测进行建模相关的问题,并提出简单的贝叶斯模型以充分解决这一问题。

方法

进行了一项系统的文献综述,以确定在逻辑回归设置中适当考虑假阴性/假阳性的疟疾研究的比例。还使用模拟和巴西亚马逊西部的疟疾数据,将标准逻辑回归的推断与三个提议的贝叶斯模型的推断进行了比较。

结果

系统的文献综述表明,疟疾流行病学家在很大程度上没有意识到使用逻辑回归对不完善诊断检测结果进行建模的问题。模拟结果表明,与标准逻辑回归相比,使用提议的贝叶斯模型时统计推断可得到显著改善。最后,使用其中一个提议的贝叶斯模型对原始疟疾数据进行分析发现,显微镜检测的敏感性受人们在研究区域居住时间的强烈影响,并且识别出一个重要的风险因素(即参与森林采伐业),而标准逻辑回归会遗漏该因素。

结论

鉴于疟疾研究人员采用了众多诊断方法,且普遍使用逻辑回归对这些诊断检测结果进行建模,本文提供了关键指南,以在存在错误分类误差的情况下改进数据分析实践。提供了易于使用且可轻松适配WinBUGS的代码,可直接实施提议的贝叶斯模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/924a/4634725/a3ccc5a1eb95/12936_2015_966_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验