Suppr超能文献

病毒 APPsα 基因转移可挽救阿尔茨海默病小鼠模型中的突触功能障碍。

Viral gene transfer of APPsα rescues synaptic failure in an Alzheimer's disease mouse model.

机构信息

INSERM U1169/MIRCen CEA, 92265, Fontenay aux Roses, France.

University Paris Sud, University Paris-Saclay, 91400, Orsay, France.

出版信息

Acta Neuropathol. 2016 Feb;131(2):247-266. doi: 10.1007/s00401-015-1498-9. Epub 2015 Nov 4.

Abstract

Alzheimer's disease (AD) is characterized by synaptic failure, dendritic and axonal atrophy, neuronal death and progressive loss of cognitive functions. It is commonly assumed that these deficits arise due to β-amyloid accumulation and plaque deposition. However, increasing evidence indicates that loss of physiological APP functions mediated predominantly by neurotrophic APPsα produced in the non-amyloidogenic α-secretase pathway may contribute to AD pathogenesis. Upregulation of APPsα production via induction of α-secretase might, however, be problematic as this may also affect substrates implicated in tumorigenesis. Here, we used a gene therapy approach to directly overexpress APPsα in the brain using AAV-mediated gene transfer and explored its potential to rescue structural, electrophysiological and behavioral deficits in APP/PS1∆E9 AD model mice. Sustained APPsα overexpression in aged mice with already preexisting pathology and amyloidosis restored synaptic plasticity and partially rescued spine density deficits. Importantly, AAV-APPsα treatment also resulted in a functional rescue of spatial reference memory in the Morris water maze. Moreover, we demonstrate a significant reduction of soluble Aβ species and plaque load. In addition, APPsα induced the recruitment of microglia with a ramified morphology into the vicinity of plaques and upregulated IDE and TREM2 expression suggesting enhanced plaque clearance. Collectively, these data indicate that APPsα can mitigate synaptic and cognitive deficits, despite established pathology. Increasing APPsα may therefore be of therapeutic relevance for AD.

摘要

阿尔茨海默病(AD)的特征是突触功能障碍、树突和轴突萎缩、神经元死亡以及认知功能的进行性丧失。人们普遍认为,这些缺陷是由于β-淀粉样蛋白的积累和斑块沉积引起的。然而,越来越多的证据表明,生理 APP 功能的丧失主要是由非淀粉样形成的α-分泌酶途径中产生的神经营养 APPsα 介导的,这可能导致 AD 的发病机制。通过诱导α-分泌酶增加 APPsα 的产生可能会有问题,因为这也可能影响到肿瘤发生中涉及的底物。在这里,我们使用腺相关病毒(AAV)介导的基因转移的基因治疗方法在大脑中直接过表达 APPsα,并探索其在 APP/PS1∆E9 AD 模型小鼠中挽救结构、电生理和行为缺陷的潜力。在已经存在病理和淀粉样变性的老年小鼠中持续过表达 APPsα 恢复了突触可塑性,并部分挽救了棘突密度缺陷。重要的是,AAV-APPsα 治疗还导致 Morris 水迷宫中空间参考记忆的功能恢复。此外,我们还证明了可溶性 Aβ 物种和斑块负荷的显著减少。此外,APPsα 诱导具有分支形态的小胶质细胞募集到斑块附近,并上调 IDE 和 TREM2 的表达,表明增强了斑块清除。总之,这些数据表明,尽管存在已建立的病理,APPsα 可以减轻突触和认知缺陷。增加 APPsα 可能对 AD 具有治疗意义。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验